Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 640: 990-1004, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36913837

RESUMEN

Due to their higher energy density, lower prices, and more environmentally friendly active components, Li-S batteries will soon compete with the current Li-ion batteries. However, issues persist that hinder this implementation, such as the poor conductivity of S and sluggish kinetics due to the polysulfide shuttle, among others. Herein, Ni nanocrystals encapsulated in a C matrix are obtained by a novel strategy based on the thermal decomposition of a Ni oleate-oleic acid complex at low-to-moderate temperatures: 500 and 700 °C. The two C/Ni composites were employed as hosts in Li-S batteries. Although the C matrix is amorphous at 500 °C, it is highly graphitized at 700 °C. At this moderate temperature, the simultaneous generation of Ni nanocrystals and the carbon matrix enhances the catalytic activity of Ni toward the graphitization process, which is negligible if starting from a mixture of a Ni salt and carbon source, even when calcined at temperatures as high as 1000 °C. The electrode made from the C/Ni composite obtained at 700 °C exhibits a high reversible capacity and an enhanced rate capability, much better not only than the C/Ni composite obtained at 500 °C but than others based on amorphous C calcined at very high temperatures, around 1000 °C. These properties are attributed to an increase in the electrical conductivity parallel to the ordering of the layers. We believe this work provides a new strategy to design C-based composites capable of combining the formation of nanocrystalline phases and the control of the C structure with superior electrochemical properties for Li-S batteries.

2.
Dev Cell ; 37(3): 279-88, 2016 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-27117666

RESUMEN

Segregation of functional organelles during the cell cycle is crucial to generate healthy daughter cells. In Saccharomyces cerevisiae, ER stress causes an ER inheritance block to ensure cells inherit a functional ER. Here, we report that formation of tubular ER in the mother cell, the first step in ER inheritance, depends on functional symmetry between the cortical ER (cER) and perinuclear ER (pnER). ER stress induces functional asymmetry, blocking tubular ER formation and ER inheritance. Using fluorescence recovery after photobleaching, we show that the ER chaperone Kar2/BiP fused to GFP and an ER membrane reporter, Hmg1-GFP, behave differently in the cER and pnER. The functional asymmetry and tubular ER formation depend on Reticulons/Yop1, which maintain ER structure. LUNAPARK1 deletion in rtn1Δrtn2Δyop1Δ cells restores the pnER/cER functional asymmetry, tubular ER generation, and ER inheritance blocks. Thus, Reticulon/Yop1-dependent changes in ER structure are linked to ER inheritance during the yeast cell cycle.


Asunto(s)
Núcleo Celular/metabolismo , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Membrana Celular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA