Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 127(50): 10663-10680, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38081796

RESUMEN

The kinetics of oxidation of micromolar concentrations of ascorbic acid (AA) catalyzed by Cu(II) in solutions representative of biological and environmental aqueous systems has been investigated in both the presence and absence of oxygen. The results reveal that the reaction between AA and Cu(II) is a relatively complex set of redox processes whereby Cu(II) initially oxidizes AA yielding the intermediate ascorbate radical (A•-) and Cu(I). The rate constant for this reaction was determined to have a lower limit of 2.2 × 104 M-1 s-1. Oxygen was found to play a critical role in mediating the Cu(II)/Cu(I) redox cycle and the oxidation reactions of AA and its oxidized forms. Among these processes, the oxidation of the ascorbate radical by molecular oxygen was identified to play a key role in the consumption of ascorbic acid, despite being a slow reaction. The rate constant for this reaction (A•-+O2→DHA+O2•-) was determined for the first time with a calculated value of 54 ± 8 M-1 s-1. The kinetic model developed satisfactorily describes the Cu/AA/O2 system over a range of conditions including different concentrations of NaCl (0.2 and 0.7 M) and pH (7.4 and 8.1). Appropriate adjustments to the rate constant for the reaction between Cu(I) and O2 were found to account for the influence of the chloride ions and pH on the kinetics of the process. Additionally, the presence of Cu(III) as the primary oxidant resulting from the interaction between Cu(I) and H2O2 in the Cu(II)/AA system was confirmed, along with the coexistence of HO•, possibly due to an equilibrium established between Cu(III) and HO•.

2.
ACS Chem Neurosci ; 11(21): 3646-3657, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33143428

RESUMEN

The occurrence and progression of Parkinson's disease (PD) has been associated with the observation of elevated iron concentrations in the substantia nigra pars compacta (SNpc). While the reasons for the impact of elevated iron concentrations remain unclear, one hypothesis is that the presence of labile iron induces the oxidation of dopamine (DA) to toxic quinones such as aminochrome (DAC) and reactive oxygen species (ROS). As such, one of the proposed therapeutic strategies has been the use of iron chelators such as deferiprone (DFP) (which is recognized to have limitations related to its rapid degradation in the liver) to reduce the concentration of labile iron. In this study, a detailed investigation regarding the novel iron chelator, CN128, was conducted and a kinetic model developed to elucidate the fundamental behavior of this chelator. The results in this work reveal that CN128 is effective in alleviating the toxicity induced by iron and DA to neurons when DA is present at moderate concentrations. When all the iron is chelated by CN128, the formation of DAC and the oxidation of DA can be reduced to levels identical to that in the absence of iron. The production of H2O2 is lower than that generated via the autoxidation of the same amount of DA. However, when severe leakage of DA occurs, the application of CN128 is insufficient to alleviate the associated toxicity. This is attibuted to the less important role of iron in the production of toxic intermediates at high concentrations of DA. CN128 is superior to DFP with regard to the reduction in formation of DAC and elevation in DA concentration. In summary, the results of this study suggest that prodromal application of the chelator CN128 could be effective in preventing the onset and slowing the early stage development of PD symptoms associated with oxidants and toxic intermediates resulting from the iron-mediated oxidation of the neurotransmitter dopamine with CN128 likely to be superior to DFP in view of its greater in vivo availability and less problematic side effects.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Humanos , Peróxido de Hidrógeno , Quelantes del Hierro/farmacología , Oxidación-Reducción , Enfermedad de Parkinson/tratamiento farmacológico
3.
J Hazard Mater ; 392: 122261, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32066018

RESUMEN

Cu-based Fenton systems have been recognized as a promising suite of technologies for the treatment of industrial wastewaters due to their high catalytic oxidation capacity. Rapid progress regarding Cu Fenton systems has been made not only in fundamental mechanistic aspects of these systems but also with regard to applications over the past decade. Based on available literature, this review synthesizes the recent advances regarding both the understanding and applications of Cu-based Fenton processes for industrial wastewater treatment. Cu-based catalysts that are essential to the effectiveness of use of Cu Fenton reactions for oxidation of target species are mainly classified into two types: (i) Cu complexes with organic or inorganic ligands, and (ii) Cu composites with inorganic materials. Performance of the Cu-based catalysts for the removal of organic pollutants in industrial wastewaters are reviewed, with the key operating parameters illustrated. Furthermore, the roles of Cu complexes and composites in both homogeneous and heterogeneous Cu-Fenton systems are critically examined with particular focus on the mechanisms involved. Perspectives and future efforts needed for Cu-based Fenton systems using Cu complexes and composites for industrial wastewater treatment are presented.

4.
Environ Sci Technol ; 54(4): 2334-2343, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31999104

RESUMEN

Copper is a critical trace nutrient and, at higher concentrations, a toxicant in natural waters, with the relative rates of transformation between the Cu(I) and Cu(II) oxidation states being key to its speciation, bioavailability, and toxicity. While the influence of chloride (Cl-) and natural organic matter on Cu speciation and associated redox transformations has been studied separately, their combined influence on Cu speciation and Cu redox transformations has not been examined. As such, in this study, we investigate the impact of Cl- and Suwannee River fulvic acid (SRFA) on Cu(II) reduction and Cu(I) oxidation kinetics at pH 8.2. SRFA plays a dual role in providing Cu(II) reducing moieties as well as Cu ligating sites. Our results indicate that the SRFA-bound Cu(II) is less reactive than the inorganic Cu(II), and the SRFA-bound Cu(I) being much more rapidly oxidized than the inorganic Cu(I). The presence of Cl- weakens Cu(II) binding by SRFA, thereby increasing the reactivity of Cu(II). Similarly, weakening of Cu(I) binding by SRFA and concomitant binding of Cu(I) by Cl- stabilizes Cu(I). Our results further show that continuous formation of hydrogen peroxide occurs in the presence of Cu(II), SRFA, and Cl- in air-saturated solution with the presence of H2O2 enhancing the dynamic nature of the system.


Asunto(s)
Peróxido de Hidrógeno , Ríos , Benzopiranos , Oxidación-Reducción
5.
Environ Sci Technol ; 53(22): 13364-13373, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31657549

RESUMEN

Flow-electrode capacitive deionization (FCDI) is an emerging electrochemically driven technology for brackish and/or sea water desalination with merits of large salt adsorption capacity, high flow efficiency, and easy electrode management. While FCDI holds promise for continuous operation, there are very few investigations with regard to the regeneration/reuse of flowable electrodes and the separation of brine from electrodes with these operation prerequisites for real nonintermittent water desalination. In this study, we propose a novel module design to achieve these critical steps involving integration of an FCDI cell and a ceramic microfiltration (MF) contactor. Our investigations reveal that the brine discharge rate is the dominant factor for stable and efficient operation of the integrated module. Results obtained show that the integrated FCDI/MF system can be used to successfully separate brackish water (of salinities 1, 2 and 5 g L-1) into both a potable stream (<0.5 g L-1) and a brine stream (concentrated by 2-20 times) in a continuous manner with extremely high water recovery rates (up to 97%) and reasonable energy consumption. Another notable characteristic of the integrated system is the high thermodynamic energy efficiency (∼30%) with such efficiencies 4-5 times larger than those of conventional capacitive deionization units and comparable to reverse osmosis and electrodialysis systems achieving similar separation efficiencies. In brief, the results of studies described here indicate that continuous and efficient operation of FCDI is a real possibility and pave the way for scale-up of this emerging technology.


Asunto(s)
Purificación del Agua , Adsorción , Electrodos , Aguas Salinas , Cloruro de Sodio
6.
Front Neurosci ; 12: 859, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534046

RESUMEN

Parkinson's disease is the second most common neurodegenerative disease. While age is the most significant risk factor, the exact cause of this disease and the most effective approaches to mitigation remain unclear. It has long been proposed that dopamine may play a role in the pathology of Parkinson's disease in view of its ability to generate both protein-modifying quinones such as aminochrome and reactive oxygen species, especially in the presence of pathological iron accumulation in the primary site of neuron loss. Given the clinically measured acidosis of post-mortem Parkinson's disease brain tissue, the interaction between dopamine and iron was investigated over a pH range of 7.4 to 6.5 with emphasis on the accumulation of toxic quinones and generation of reactive oxygen species. Our results show that the presence of iron accelerates the formation of aminochrome with ferrous iron (Fe[II]) being more efficient in this regard than ferric iron (Fe[III]). Our results further suggest that a reduced aminochrome rearrangement rate coupled with an enhanced turnover rate of Fe[II] as a result of brain tissue acidosis could result in aminochrome accumulation within cells. Additionally, under these conditions, the enhanced redox cycling of iron in the presence of dopamine aggravates oxidative stress as a result of the production of damaging reactive species, including hydroxyl radicals.

7.
Environ Sci Process Impacts ; 20(1): 232-244, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29265130

RESUMEN

Seasonally persistent blooms of Ulvaria obscura var. blyttii, the prominent species present in green tides in the northern Pacific and Atlantic, have been well documented in recent decades. The synthesis and release of dopamine (DA) by Ulvaria obscura var. blyttii has been proposed to be associated with the suppression and inhibition of the growth of other organisms competing for limited resources. To better understand the potential benefits obtained from the release of DA, the transformation of DA as well its concomitant impact on the local seawater environment are investigated in this study. The results show that, despite several toxic quinones being produced during the oxidation of DA, aminochrome (DAC) is likely to be the only quinone playing an allelopathic role in view of its expected accumulation in the surrounding environment. As a consequence of the direct oxidation of DA and DA induced generation of 5,6-dihydroxyindole (DHI), high concentrations of H2O2 accumulate over time, especially in the presence of elements including iron, calcium and magnesium. The oxidative stress to other organisms induced by the release of DA may be particularly detrimental as a result of H2O2 induced reduction in photosynthesis, inactivation of antioxidant systems or even the generation of ˙OH. DA induced iron mobilization may benefit the continuously persistent blooms of Ulvaria obscura var. blyttii or even the whole community via alleviation in iron deficiency within the bloom region.


Asunto(s)
Chlorophyta/metabolismo , Dopamina/análisis , Eutrofización , Hierro/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Agua de Mar/química , Chlorophyta/crecimiento & desarrollo , Oxidación-Reducción , Estrés Oxidativo/fisiología , Quinonas/análisis
8.
J Neurochem ; 137(6): 955-68, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26991725

RESUMEN

The non-enzymatically catalyzed oxidation of dopamine (DA) and the resultant formation of powerful oxidants such as the hydroxyl radical ((•) OH) through 'Fenton chemistry' in the presence of iron within dopaminergic neurons are thought to contribute to the damage of cells or even lead to neuronal degenerative diseases such as Parkinson's disease. An understanding of DA oxidation as well as the transformation of the intermediates that are formed in the presence of iron under physiological conditions is critical to understanding the mechanism of DA and iron induced oxidative stress. In this study, the generation of H2 O2 through the autoxidation and iron-catalyzed oxidation of DA, the formation of the dominant complex via the direct reaction with Fe(II) and Fe(III) in both oxygen saturated and deoxygenated conditions and the oxidation of Fe(II) in the presence of DA at physiological pH 7.4 were investigated. The oxidation of DA resulted in the generation of significant amounts of H2 O2 with this process accelerated significantly in the presence of Fe(II) and Fe(III). At high DA:Fe(II) ratios, the results from this study suggest that DA plays a protective role by complexing Fe(II) and preventing it from reacting with the generated H2 O2 . However, the accumulation of H2 O2 may result in cellular damage as high intracellular H2 O2 concentrations will result in the oxidation of remaining Fe(II) mainly through the peroxidation pathway. At low DA:Fe(II) ratios however, it is likely that DA will act as a pro-oxidant by generating H2 O2 which, in the presence of Fe(II), will result in the production of strongly oxidizing (•) OH radicals. Powerful oxidants such as the hydroxyl radical ((•) OH) have previously been thought to be generated through the interplay between dopamine (DA) and iron, contributing to damage to cells and, potentially, leading to neuronal degenerative diseases such as Parkinson's disease. Our results suggest that DA plays a dual role as high DA/Fe(II) ratios prevent Fe(II) from reacting with the generated H2 O2 thereby reducing (•) OH generation, whereas low DA/Fe(II) ratios enhance (•) OH generation as a result of reaction of unbound Fe(II) and H2 O2 produced via both autoxidation and iron-catalyzed oxidation of DA.


Asunto(s)
Catecolaminas/farmacología , Dopamina/metabolismo , Compuestos Férricos/metabolismo , Compuestos Ferrosos/metabolismo , Hierro/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Humanos , Modelos Químicos , Oxidación-Reducción/efectos de los fármacos
9.
J Inorg Biochem ; 137: 74-84, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24815905

RESUMEN

Spontaneous oxidation of dopamine (DA) and the resultant formation of free radical species within dopamine neurons of the substantia nigra (SN) is thought to bestow a considerable oxidative load upon these neurons and may contribute to their vulnerability to degeneration in Parkinson's disease (PD). An understanding of DA oxidation under physiological conditions is thus critical to understanding the relatively selective vulnerability of these dopaminergic neurons in PD and may support the development of novel neuro-protective approaches for this disorder. In this study, the oxidation of dopamine (0.2-10µM) was investigated both in the absence and the presence of copper (0.01-0.4µM), a redox active metal that is present at considerable concentrations in the SN, over a range of background chloride concentrations (0.01-0.7M), different oxygen concentrations and at physiological pH7.4. DA was observed to oxidize extremely slowly in the absence of copper and at moderate rates only in the presence of copper but without chloride. The oxidation of DA however was significantly enhanced in the presence of both copper and chloride with the rate of DA oxidation greatest at intermediate chloride concentrations (0.05-0.2M). The variability of the catalytic effect of Cu(II) on DA oxidation at different chloride concentrations can be explained and successfully modeled by appropriate consideration of the reaction of Cu(II) species with DA and the conversion of Cu(I) to Cu(II) through oxygenation. This model suggests that the speciation of Cu(II) and Cu(I) is critically important to the kinetics of DA oxidation and thus the vulnerability to degradation of dopaminergic neuron in the brain milieu.


Asunto(s)
Cobre/química , Dopamina/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Catálisis , Humanos , Cinética , Neuronas/química , Neuronas/metabolismo , Oxidación-Reducción , Enfermedad de Parkinson/patología , Agua/química
10.
Free Radic Biol Med ; 71: 291-302, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24681336

RESUMEN

Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral pH indicated good agreement between thermodynamic and kinetic considerations for various key reactions involved, further validating the proposed mechanisms involved in both the autoxidation and the copper-catalyzed oxidation of NH2Q in circumneutral pH solutions.


Asunto(s)
Benzoquinonas/química , Cobre/química , Peróxido de Hidrógeno/química , Hidroquinonas/química , Oxígeno/química , Superóxidos/química , Catálisis , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción , Cloruro de Sodio , Soluciones , Electricidad Estática , Termodinámica
11.
Environ Sci Technol ; 47(15): 8355-64, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23796190

RESUMEN

A detailed kinetic model has been developed to describe the oxidation of Cu(I) by O2 and the reduction of Cu(II) by 1,4-hydroquinone (H2Q) in the presence of O2 in 0.7 M NaCl solution over a pH range of 6.5-8.0. The reaction between Cu(I) and O2 is shown to be the most important pathway in the overall oxidation of Cu(I), with the rate constant for this oxidation process increasing with an increasing pH. In 0.7 M NaCl solutions, Cu(II) is capable of catalyzing the oxidation of H2Q in the presence of O2 with the monoanion, HQ(-), the kinetically active hydroquinone form, reducing Cu(II) with an intrinsic rate constant of (5.0 ± 0.4) × 10(7) M(-1) s(-1). Acting as a chain-propagating species, the deprotonated semiquinone radical (SQ(•) (-)) generated from both the one-electron oxidation of H2Q and the one-electron reduction of 1,4-benzoquinone (BQ) also reacts rapidly with Cu(II) and Cu(I), with the same rate constant of (2.0 ± 0.5) × 10(7) M(-1) s(-1). In addition to its role in reformation of Cu(II) via continuous oxidation of Cu(I), O2 rapidly removes SQ(•) (-), resulting in the generation of O2(•) (-). Agreement between half-cell reduction potentials of different redox couples provides confirmation of the veracity of the proposed model describing the interactions of copper and quinone species in circumneutral pH saline solutions.


Asunto(s)
Cobre/química , Hidroquinonas/química , Cloruro de Sodio/química , Agua/química , Catálisis , Concentración de Iones de Hidrógeno , Cinética , Modelos Teóricos , Oxidación-Reducción
12.
J Phys Chem A ; 116(25): 6590-9, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22574891

RESUMEN

The kinetics of Cu(II) reduction by Suwannee River fulvic acid (SRFA) at concentrations from 0.25 to 8 mg L(-1) have been investigated in 2 mM NaHCO(3) and 0.7 M NaCl at pH 8.0. In the absence of oxygen, SRFA reduced Cu(II) to Cu(I) in a biphasic manner, with initial rapid formation of Cu(I) followed by a much slower increase in Cu(I) concentration over time. When present, oxygen only had a noticeable effect on Cu(I) concentrations in the second phase of the reduction process and at high [SRFA]. In both the absence and presence of oxygen, the rate of Cu(I) generation increased with increasing [SRFA]. At 8 mg L(-1) [SRFA], nearly 75% of the 0.4 µM Cu(II) initially present was reduced to Cu(I) after 20 min, although the yield of Cu(I) relative to [SRFA] decreased at [SRFA] > 1 mg L(-1). Two plausible kinetic modeling approaches were found to satisfactorily describe the experimental data over a range of [SRFA]. Despite some uncertainty as to which approach is correct, common features of both approaches were complexation of Cu(II) by SRFA and reduction of Cu(II) by two different electron donor groups within SRFA: a relatively labile electron donor (with a concentration of 1.1 × 10(-4) equiv of e(-) (g of SRFA)(-1)) that reduced Cu(II) relatively rapidly and a less labile donor (with a concentration of 3.1 × 10(-4) equiv of e(-) (g of SRFA)(-1)) that reduced Cu(II) more slowly.


Asunto(s)
Benzopiranos/química , Cobre/química , Ríos/química , Cinética , Oxidación-Reducción , Oxígeno/química
13.
Environ Sci Technol ; 46(3): 1527-35, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22185182

RESUMEN

The oxidation kinetics of nanomolar concentrations of Cu(I) in NaCl solutions have been investigated over the pH range 6.5-8.0. The overall apparent oxidation rate constant was strongly affected by chloride, moderately by bicarbonate, and to a lesser extent by pH. In the absence of bicarbonate, an equilibrium-based speciation model indicated that Cu(+) and CuClOH(-) were the most kinetically reactive species, while the contribution of other Cu(I) species to the overall oxidation rate was minor. A kinetic model based on recognized key redox reactions for these two species further indicated that oxidation of Cu(I) by oxygen and superoxide were important reactions at all pH values and chloride concentrations considered, but back reduction of Cu(II) by superoxide only became important at relatively low chloride concentrations. Bicarbonate concentrations from 2 to 5 mM substantially accelerated Cu(I) oxidation. Kinetic analysis over a range of bicarbonate concentrations revealed that this was due to formation of CuCO(3)(-), which reacts relatively rapidly with oxygen, and not due to inhibition of the back reduction of Cu(II) by formation of Cu(II)-carbonate complexes. We conclude that the simultaneous oxygenation of Cu(+), CuClOH(-), and CuCO(3)(-) is the rate-limiting step in the overall oxidation of Cu(I) under these conditions.


Asunto(s)
Bicarbonatos/química , Cloruros/química , Cobre/química , Modelos Químicos , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción , Oxígeno/química , Cloruro de Sodio/química
14.
Environ Sci Technol ; 45(4): 1428-34, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21265570

RESUMEN

Contemporary studies indicate that reactive oxygen species (ROS) such as superoxide play a key role in the toxicity and behavior of silver nanoparticles (AgNPs). While there have been suggestions that superoxide is able to reduce silver(I) ions with resultant production of AgNPs, no experimental evidence that this process actually occurs has been produced. Here we present definitive experimental evidence for the reduction of silver(I) by superoxide. A second-order rate constant of 64.5 ± 16.3 M(-1)·s(-1) is determined for this reaction in the absence of AgNPs. The overall rate constant, however, increases by at least 4 orders of magnitude in the presence of AgNPs. A model based on electron charging and discharging of AgNPs satisfactorily describes the kinetics of this process. The ability for AgNPs to undergo catalytic cycling provides a pathway for the continual generation of ROS and the regeneration of AgNPs following oxidation.


Asunto(s)
Nanopartículas del Metal/química , Plata/química , Iones , Cinética , Nanopartículas , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Superóxidos
15.
J Phys Chem A ; 112(24): 5395-405, 2008 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-18507361

RESUMEN

The kinetics of Fe(II) oxidation in the presence of low concentrations of citrate and salicylate have been investigated in aqueous solutions over the pH range 6.0-8.0 using colorimetry. A kinetic model has been developed to describe the oxidation of Fe(II) with specific attention given to the oxidation of inorganic Fe(II), formation and dissociation of Fe(II) complexes and the oxidation of these complexes. At low concentrations of salicylate, both experimental data and model show that the common approach to modeling Fe(II) oxidation that assumes pre-equilibrium between metal and ligand prior to their oxidation is not valid. Complexation of Fe(II) by salicylate is found to be relatively slow, and oxidation of the complex formed occurs rapidly. Citrate, on the other hand was found to be in rapid equilibrium with Fe(II) but the complex formed was oxidized slowly. Both citrate and salicylate complexes are found to dissociate at a rate much faster than previously thought. A model of the oxidation kinetics of Fe(II) species that incorporates the formation and dissociation kinetics of Fe(II) and Fe(III) complexes of citrate and salicylate as well as the reactions of these species with oxygen and reduced oxygen species including superoxide and hydrogen peroxide provides an excellent description of data obtained over a wide range of concentration and pH conditions.


Asunto(s)
Ácido Cítrico/química , Compuestos Ferrosos/química , Modelos Químicos , Salicilatos/química , Agua/química , Colorimetría , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción , Soluciones , Temperatura
16.
J Phys Chem A ; 112(4): 643-51, 2008 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-18179188

RESUMEN

The kinetics of Fe(II) oxidation in the presence of various citrate concentrations have been investigated in aqueous solutions over the pH range 6.0-8.0 using colorimetry and speciation modeling. Oxidation of Fe(II) was interpreted and quantitatively modeled in terms of oxidation of various Fe(II)-citrate species. Using the model, it is possible to predict whether the presence of citrate would dominate the Fe(II) oxidation and thus enhance/retard the oxidation rate of Fe(II) and vice versa. The study also supports the presence of other Fe(II)-citrate species rather than just the monomeric species at circumneutral pH. At low pH and in a system where complexation of Fe(II) by citrate is dominant, oxidation of Fe(II) is controlled by the oxidation of both Fecit- and Fecit24-. As the pH increases, the oxidation of Fe(OH)cit25- becomes increasingly important and dominates the oxidation of Fe(II) at pH 8.0. Rate constants for the oxidation of all five suggested Fe(II)-citrate species have been estimated and may be used to predict the rate of Fe(II) oxidation at any combination of pH and citrate concentration.


Asunto(s)
Ácido Cítrico/química , Compuestos Ferrosos/química , Hierro/química , Temperatura , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción , Soluciones/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA