Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oncotarget ; 7(45): 72395-72414, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27590350

RESUMEN

Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genes Mitocondriales , Genes myc , Neoplasias/genética , Animales , Línea Celular Tumoral , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas c-myc , Especies Reactivas de Oxígeno/metabolismo , Transfección
2.
Mol Cell Biol ; 31(24): 5037-45, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21986497

RESUMEN

Aberrant MYC expression is a common oncogenic event in human cancer. Paradoxically, MYC can either drive cell cycle progression or induce apoptosis. The latent ability of MYC to induce apoptosis has been termed "intrinsic tumor suppressor activity," and reactivating this apoptotic function in tumors is widely considered a valuable therapeutic goal. As a transcription factor, MYC controls the expression of many downstream targets, and for the majority of these, it remains unclear whether or not they play direct roles in MYC function. To identify the subset of genes specifically required for biological activity, we conducted a screen for functionally important MYC targets and identified BAG1, which encodes a prosurvival chaperone protein. Expression of BAG1 is regulated by MYC in both a mouse model of breast cancer and transformed human cells. Remarkably, BAG1 induction is essential for protecting cells from MYC-induced apoptosis. Ultimately, the synthetic lethality we have identified between MYC overexpression and BAG1 inhibition establishes a new pathway that might be exploited to reactivate the latent apoptotic potential of MYC as a cancer therapy.


Asunto(s)
Apoptosis/genética , Neoplasias de la Mama/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes myc , Factores de Transcripción/metabolismo , Animales , Western Blotting , División Celular , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Femenino , Sitios Genéticos , Humanos , Ratones , Ratones Noqueados , Plásmidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/genética
3.
Proc Natl Acad Sci U S A ; 105(48): 18782-7, 2008 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19033189

RESUMEN

Mammalian cells fuel their growth and proliferation through the catabolism of two main substrates: glucose and glutamine. Most of the remaining metabolites taken up by proliferating cells are not catabolized, but instead are used as building blocks during anabolic macromolecular synthesis. Investigations of phosphoinositol 3-kinase (PI3K) and its downstream effector AKT have confirmed that these oncogenes play a direct role in stimulating glucose uptake and metabolism, rendering the transformed cell addicted to glucose for the maintenance of survival. In contrast, less is known about the regulation of glutamine uptake and metabolism. Here, we report that the transcriptional regulatory properties of the oncogene Myc coordinate the expression of genes necessary for cells to engage in glutamine catabolism that exceeds the cellular requirement for protein and nucleotide biosynthesis. A consequence of this Myc-dependent glutaminolysis is the reprogramming of mitochondrial metabolism to depend on glutamine catabolism to sustain cellular viability and TCA cycle anapleurosis. The ability of Myc-expressing cells to engage in glutaminolysis does not depend on concomitant activation of PI3K or AKT. The stimulation of mitochondrial glutamine metabolism resulted in reduced glucose carbon entering the TCA cycle and a decreased contribution of glucose to the mitochondrial-dependent synthesis of phospholipids. These data suggest that oncogenic levels of Myc induce a transcriptional program that promotes glutaminolysis and triggers cellular addiction to glutamine as a bioenergetic substrate.


Asunto(s)
Metabolismo Energético/fisiología , Glutamina/metabolismo , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transcripción Genética , Animales , Línea Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal/fisiología
4.
Cell Cycle ; 7(11): 1522-4, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18469533

RESUMEN

Initial studies of the mammalian hSAGA transcriptional coactivator complex identified the acetyltransferase hGCN5/PCAF as the only known enzymatic subunit. Recently we demonstrated that the ubiquitin hydrolase USP22 comprises a second enzymatic subunit of hSAGA, and that is required for activator-driven transcription. USP22 is expressed with polycomb ubiquitin ligases in an 11 gene signature that defines therapy-resistant tumors. At the biochemical level, these Polycomb proteins function as global transcriptional repressors by catalyzing the ubiquitylation of histone H2A. In yeast, the USP22 homolog functions as a transcriptional coactivator by removing ubiquitin from a distinct core histones, H2B. Given that USP22 is expressed in cancer as part of an 11 gene signature that includes transcriptional repressors which ubiquitylate H2A, it seemed possible that USP22 might activate transcription in part via the deubiquitylation of this same substrate. As reported here, biochemical analysis of the substrate specificity of USP22 reveals that it deubiquitylates histone H2A in addition to H2B. This finding supports a model in which the H2A ubiquitin hydrolase USP22 is coordinately expressed with Polycomb H2A ubiquitin ligases in order that the transcription of certain critical transforming genes be maintained in the face of the global repression mediated by Polycomb.


Asunto(s)
Regulación de la Expresión Génica/genética , Histonas/metabolismo , Complejos Multiproteicos/metabolismo , Tioléster Hidrolasas/metabolismo , Línea Celular Tumoral , Humanos , Modelos Biológicos , Proteínas del Grupo Polycomb , Proteínas Represoras/metabolismo , Ubiquitina Tiolesterasa , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA