Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21075, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256452

RESUMEN

This paper discusses the design process toward new lumped chaotic systems that originates in higher-order ordinary differential equations commonly used as description of ideal oscillators. In investigated third-order case, two chaotic oscillators were constructed. These systems are dual in the sense of vector field geometry local to fixed points. The existence of robust chaos was proved by both standard routines of numerical analysis and practical measurement. For the fourth-order oscillatory equation, the concept based on interaction between superinductor and supercapacitor was examined in detail. Since both "superelements" are active, the nonlinearity essential to the evolution of chaos is fully passive. It is demonstrated that complex motion is robust and does not represent long transient behavior or numerical artefact. The existence of chaos was verified using standard quantifiers of the flow, such as the largest Lyapunov exponents, recurrence plots, approximate entropy and sensitivity calculation. A good final agreement between theoretical assumptions and practical results will be concluded, on a visual comparison basis.

2.
Entropy (Basel) ; 25(9)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37761651

RESUMEN

Studying simple chaotic systems with fractional-order derivatives improves modeling accuracy, increases complexity, and enhances control capabilities and robustness against noise. This paper investigates the dynamics of the simple Sprott-B chaotic system using fractional-order derivatives. This study involves a comprehensive dynamical analysis conducted through bifurcation diagrams, revealing the presence of coexisting attractors. Additionally, the synchronization behavior of the system is examined for various derivative orders. Finally, the integer-order and fractional-order electronic circuits are implemented to validate the theoretical findings. This research contributes to a deeper understanding of the Sprott-B system and its fractional-order dynamics, with potential applications in diverse fields such as chaos-based secure communications and nonlinear control systems.

3.
Sensors (Basel) ; 23(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37050658

RESUMEN

This paper describes a design process for a universal development kit based on an analog computer concept that can model the dynamics of an arbitrarily complex dynamical system up to the fourth order. The constructed development kit contains digital blocks and associated analog-to-digital and digital-to-analog converters (ADCs and DAC), such that multiple-segmented piecewise-linear input-output characteristics can be used for the synthesis of the prescribed mathematical model. Polynomial input-output curves can be implemented easily by four-quadrant analog multipliers. The proposed kit was verified through several experimental scenarios, starting with simple sinusoidal oscillators and ending with generators of continuous-time robust chaotic attractors. The description of each individual part of the development kit is accompanied by links to technical documentation, allowing skilled readers in the construction of electronic systems to replicate the proposed functional example. For this purpose, the electrical scheme of the hybrid analog computer and all important source codes are available online.

4.
Entropy (Basel) ; 24(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892994

RESUMEN

Biological, engineering, economic, social, medical, environmental, and other systems exhibit time evolution [...].

5.
Entropy (Basel) ; 23(2)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573302

RESUMEN

This paper presents and briefly discusses recent observations of dynamics associated with isolated generalized bipolar transistor cells. A mathematical model of this simple system is considered on the highest level of abstraction such that it comprises many different network topologies. The key property of the analyzed structure is its bias point since the transistor is modeled via two-port admittance parameters. A necessary but not sufficient condition for the evolution of autonomous complex behavior is the nonlinear bilateral nature of the transistor with arbitrary reason that causes this effect. It is proved both by numerical analysis and experimental measurement that chaotic motion is miscellaneous, robust, and it is neither numerical artifact nor long transient motion.

6.
Entropy (Basel) ; 22(4)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33286196

RESUMEN

This paper provides readers with three partial results that are mutually connected. Firstly, the gallery of the so-called constant phase elements (CPE) dedicated for the wideband applications is presented. CPEs are calculated for 9° (decimal orders) and 10° phase steps including », ½, and ¾ orders, which are the most used mathematical orders between zero and one in practice. For each phase shift, all necessary numerical values to design fully passive RC ladder two-terminal circuits are provided. Individual CPEs are easily distinguishable because of a very high accuracy; maximal phase error is less than 1.5° in wide frequency range beginning with 3 Hz and ending with 1 MHz. Secondly, dynamics of ternary memory composed by a series connection of two resonant tunneling diodes is investigated and, consequently, a robust chaotic behavior is discovered and reported. Finally, CPEs are directly used for realization of fractional-order (FO) ternary memory as lumped chaotic oscillator. Existence of structurally stable strange attractors for different orders is proved, both by numerical analyzed and experimental measurement.

7.
J Adv Res ; 25: 137-145, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32922981

RESUMEN

Memristor is a non-linear circuit element in which voltage-current relationship is determined by the previous values of the voltage and current, generally the history of the circuit. The nonlinearity in this component can be considered as a fractional-order form, which yields a fractional memristor (fracmemristor). In this paper, a fractional-order memristor in a chaotic oscillator is applied, while the other electronic elements are of integer order. The fractional-order range is determined in a way that the circuit has chaotic solutions. Also, the statistical and dynamical features of this circuit are analyzed. Tools like Lyapunov exponents and bifurcation diagram show the existence of multistability and antimonotonicity, two less common properties in chaotic circuits.

8.
Sensors (Basel) ; 18(12)2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30567398

RESUMEN

This paper presents a simple relaxation generator, suitable for a sensor interface, operating as a transducer of capacitance to frequency/period. The proposed circuit employs a current feedback operational amplifier, fabricated in I3T25 0.35 µ m ON Semiconductor CMOS process, and four passive elements including a grounded capacitor (the sensed parameter). It offers a low-impedance voltage output of the generated square wave. Additional frequency to DC voltage converter offers output information in the form of voltage. The experimental capacitance variation from 6.8 nF to 100 nF yields voltage change in the range from 21 mV to 106 mV with error below 5% and sensitivity 0.912 mV/nF evaluated over the full range of change. These values are in good agreement with simulation results obtained from the Mathcad model of frequency to DC voltage transducer passive circuit.

9.
Entropy (Basel) ; 20(9)2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-33265786

RESUMEN

This paper brings analysis of the multiple-valued memory system (MVMS) composed by a pair of the resonant tunneling diodes (RTD). Ampere-voltage characteristic (AVC) of both diodes is approximated in operational voltage range as common in practice: by polynomial scalar function. Mathematical model of MVMS represents autonomous deterministic dynamical system with three degrees of freedom and smooth vector field. Based on the very recent results achieved for piecewise-linear MVMS numerical values of the parameters are calculated such that funnel and double spiral chaotic attractor is observed. Existence of such types of strange attractors is proved both numerically by using concept of the largest Lyapunov exponents (LLE) and experimentally by computer-aided simulation of designed lumped circuit using only commercially available active elements.

10.
ScientificWorldJournal ; 2014: 239407, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25544951

RESUMEN

This contribution brings a deep and detailed study of the dynamical behavior associated with nonlinear oscillator described by a single third-order differential equation with scalar jump nonlinearity. The relative primitive geometry of the vector field allows making an exhaustive numerical analysis of its possible solutions, visualizations of the invariant manifolds, and basins of attraction as well as proving the existence of chaotic motion by using the concept of both Shilnikov theorems. The aim of this paper is also to complete, carry out and link the previous works on simple Newtonian dynamics, and answer the question how individual types of the phenomenon evolve with time via understandable notes.


Asunto(s)
Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA