RESUMEN
Three F2-derived biparental doubled haploid (DH) maize populations were generated for genetic mapping of resistance to common rust. Each of the three populations has the same susceptible parent, but a different resistance donor parent. Population 1 and 3 consist of 320 lines each, population 2 consists of 260 lines. The DH lines were evaluated for their susceptibility to common rust in two years and with two replications in each year. For phenotyping, a visual score (VS) for susceptibility was assigned. Additionally, unmanned aerial vehicle (UAV) derived multispectral and thermal infrared data was recorded and combined in different vegetation indices ("remote sensing", RS). The DH lines were genotyped with the DarTseq method, to obtain data on single nucleotide polymorphisms (SNPs). After quality control, 9051 markers remained. Missing values were "imputed" by the empirical mean of the marker scores of the respective locus. We used the data for comparison of genome-wide association studies and genomic prediction when based on different phenotyping methods, that is either VS or RS data. The data may be interesting for reuse for instance for benchmarking genomic prediction models, for phytopathological studies addressing common rust, or for specifications of vegetation indices.
RESUMEN
Breeding for disease resistance is a central component of strategies implemented to mitigate biotic stress impacts on crop yield. Conventionally, genotypes of a plant population are evaluated through a labor-intensive process of assigning visual scores (VS) of susceptibility (or resistance) by specifically trained staff, which limits manageable volumes and repeatability of evaluation trials. Remote sensing (RS) tools have the potential to streamline phenotyping processes and to deliver more standardized results at higher through-put. Here, we use a two-year evaluation trial of three newly developed biparental populations of maize doubled haploid lines (DH) to compare the results of genomic analyses of resistance to common rust (CR) when phenotyping is either based on conventional VS or on RS-derived (vegetation) indices. As a general observation, for each population × year combination, the broad sense heritability of VS was greater than or very close to the maximum heritability across all RS indices. Moreover, results of linkage mapping as well as of genomic prediction (GP), suggest that VS data was of a higher quality, indicated by higher -logp values in the linkage studies and higher predictive abilities for genomic prediction. Nevertheless, despite the qualitative differences between the phenotyping methods, each successfully identified the same genomic region on chromosome 10 as being associated with disease resistance. This region is likely related to the known CR resistance locus Rp1. Our results indicate that RS technology can be used to streamline genetic evaluation processes for foliar disease resistance in maize. In particular, RS can potentially reduce costs of phenotypic evaluations and increase trialing capacities.
RESUMEN
Biological nitrification inhibition (BNI) is a plant function where root systems release antibiotic compounds (BNIs) specifically aimed at suppressing nitrifiers to limit soil-nitrate formation in the root zone. Little is known about BNI-activity in maize (Zea mays L.), the most important food, feed, and energy crop. Two categories of BNIs are released from maize roots; hydrophobic and hydrophilic BNIs, that determine BNI-capacity in root systems. Zeanone is a recently discovered hydrophobic compound with BNI-activity, released from maize roots. The objectives of this study were to understand/quantify the relationship between zeanone activity and hydrophobic BNI-capacity. We assessed genetic variability among 250 CIMMYT maize lines (CMLs) characterized for hydrophobic BNI-capacity and zeanone activity, towards developing genetic markers linked to this trait in maize. CMLs with high BNI-capacity and ability to release zeanone from roots were identified. GWAS was performed using 27,085 SNPs (with unique positions on the B73v.4 reference genome, and false discovery rate = 10), and phenotypic information for BNI-capacity and zeanone production from root systems. Eighteen significant markers were identified; three associated with specific BNI-activity (SBNI), four with BNI-activity per plant (BNIPP), another ten were common between SBNI and BNIPP, and one with zeanone release. Further, 30 annotated genes were associated with the significant SNPs; most of these genes are involved in pathways of "biological process", and one (AMT5) in ammonium regulation in maize roots. Although the inbred lines in this study were not developed for BNI-traits, the identification of markers associated with BNI-capacity suggests the possibility of using these genomic tools in marker-assisted selection to improve hydrophobic BNI-capacity in maize.
Asunto(s)
Nitrificación , Zea mays , Zea mays/genética , Fitomejoramiento , Antibacterianos , Polimorfismo de Nucleótido SimpleRESUMEN
Diversity Arrays Technology (DArT) provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for which no reference genome is yet available to allow such detailed characterization.
Asunto(s)
Mapeo Cromosómico/métodos , Eucalyptus/genética , Marcadores Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Cromosomas de las Plantas , Análisis Costo-Beneficio , ADN de Plantas/genética , Ligamiento Genético , Genoma de Planta , Genómica , Genotipo , Repeticiones de Microsatélite/genética , Modelos Genéticos , Análisis de Secuencia de ADN/métodosRESUMEN
⢠Genomic selection (GS) is expected to cause a paradigm shift in tree breeding by improving its speed and efficiency. By fitting all the genome-wide markers concurrently, GS can capture most of the 'missing heritability' of complex traits that quantitative trait locus (QTL) and association mapping classically fail to explain. Experimental support of GS is now required. ⢠The effectiveness of GS was assessed in two unrelated Eucalyptus breeding populations with contrasting effective population sizes (N(e) = 11 and 51) genotyped with > 3000 DArT markers. Prediction models were developed for tree circumference and height growth, wood specific gravity and pulp yield using random regression best linear unbiased predictor (BLUP). ⢠Accuracies of GS varied between 0.55 and 0.88, matching the accuracies achieved by conventional phenotypic selection. Substantial proportions (74-97%) of trait heritability were captured by fitting all genome-wide markers simultaneously. Genomic regions explaining trait variation largely coincided between populations, although GS models predicted poorly across populations, likely as a result of variable patterns of linkage disequilibrium, inconsistent allelic effects and genotype × environment interaction. ⢠GS brings a new perspective to the understanding of quantitative trait variation in forest trees and provides a revolutionary tool for applied tree improvement. Nevertheless population-specific predictive models will likely drive the initial applications of GS in forest tree breeding.