Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 825: 153903, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35192829

RESUMEN

Microplastics quantification and classification are demanding jobs to monitor microplastic pollution and evaluate the potential health risks. In this paper, microplastics from daily supplies in diverse chemical compositions and shapes are imaged by scanning electron microscopy. It offers a greater depth and finer details of microplastics at a wider range of magnification than visible light microscopy or a digital camera, and permits further chemical composition analysis. However, it is labour-intensive to manually extract microplastics from micrographs, especially for small particles and thin fibres. A deep learning approach facilitates microplastics quantification and classification with a manually annotated dataset including 237 micrographs of microplastic particles (fragments or beads) in the range of 50 µm-1 mm and fibres with diameters around 10 µm. For microplastics quantification, two deep learning models (U-Net and MultiResUNet) were implemented for semantic segmentation. Both significantly outmatched conventional computer vision techniques and achieved a high average Jaccard index over 0.75. Especially, U-Net was combined with object-aware pixel embedding to perform instance segmentation on densely packed and tangled fibres for further quantification. For shape classification, a fine-tuned VGG16 neural network classifies microplastics based on their shapes with high accuracy of 98.33%. With trained models, it takes only seconds to segment and classify a new micrograph in high accuracy, which is remarkably cheaper and faster than manual labour. The growing datasets may benefit the identification and quantification of microplastics in environmental samples in future work.


Asunto(s)
Aprendizaje Profundo , Microplásticos , Electrones , Microscopía , Plásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA