RESUMEN
The genetic structure of a sample of isolates of the oomycete plant pathogen Phytophthora cinnamomi from natural and agricultural outbreaks and the long-distance movement of individual genotypes were studied using four microsatellite markers to genotype 159 isolates of Californian, Mexican, and worldwide origins. Allelic profiles identified 75 multilocus genotypes. A STRUCTURE analysis placed them in three groups characterized by different geographic and host ranges, different genic and genotypic diversity, and different reproductive modes. When relationships among genotypes were visualized on a minimum spanning network (MSN), genotypes belonging to the same STRUCTURE group were contiguous, with rare exceptions. A putatively ancestral group 1 had high genic diversity, included all A1 mating type isolates and all Papuan isolates in the sample, was rarely isolated from natural settings in California and Mexico, and was positioned at the center of the MSN. Putatively younger groups 2 and 3 had lower genic diversity, were both neighbors to group 1 but formed two distinct peripherical sectors of the MSN, and were equally present in agricultural commodities and natural settings in Mexico and California. A few genotypes, especially in groups 2 and 3, were isolated multiple times in different locations and settings. The presence of identical genotypes from the same hosts in different continents indicated that long-distance human-mediated movement of P. cinnamomi had occurred. The presence of identical genotypes at high frequencies in neighboring wildlands and agricultural settings suggest that specific commodities may have been the source of recent wild infestations caused by novel invasive genotypes.
Asunto(s)
Phytophthora , California , Genotipo , México , Repeticiones de Microsatélite , Phytophthora/genética , Enfermedades de las Plantas/microbiologíaRESUMEN
Ecologists and conservationists have long assumed that large grazers, including bison (Bison bison), did not occur in post-Pleistocene southwestern North America. This perception has been influential in framing the debate over conservation and land use in the northern Chihuahuan Desert. The lack of an evolutionary history of large grazers is being used to challenge the validity of ranching as a conservation strategy and to limit the protection and reintroduction of bison as a significant component of desert grassland ecosystems. Archeological records and historical accounts from Mexican archives from AD 700 to the 19th century document that the historic range of the bison included northern Mexico and adjoining areas in the United States. The Janos-Hidalgo bison herd, one of the few free-ranging bison herds in North America, has moved between Chihuahua, Mexico, and New Mexico, United States, since at least the 1920s. The persistence of this cross-border bison herd in Chihuahuan Desert grasslands and shrublands demonstrates that the species can persist in desert landscapes. Additional lines of evidence include the existence of grazing-adapted grasslands and the results of experimental studies that document declines in vegetation density and diversity following the removal of large grazers. The Janos-Hidalgo herd was formed with animals from various sources at the turn of the 19th century. Yet the future of the herd is compromised by differing perceptions of the ecological and evolutionary role of bison in the Desert Grasslands of North America. In Mexico they are considered native and are protected by federal law, whereas in New Mexico, they are considered non-native livestock and therefore lack conservation status or federal protection. Evidence written in Spanish of the presence of bison south of the accepted range and evidence from the disciplines of archaeology and history illustrate how differences in language and academic disciplines, in addition to international boundaries, have acted as barriers in shaping comprehensive approaches to conservation. Bison recovery in the region depends on binational cooperation.