Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
3.
Nanomaterials (Basel) ; 11(1)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467115

RESUMEN

In this work, we report a novel method of label-free detection of small molecules based on direct observation of interferometric signal change in graphene-modified glasses. The interferometric sensor chips are fabricated via a conventional wet transfer method of CVD-grown graphene onto the glass coverslips, lowering the device cost and allowing for upscaling the sensor fabrication. For the first time, we report the use of graphene functionalized by the aptamer as the bioreceptor, in conjunction with Spectral-Phase Interferometry (SPI) for detection of ochratoxin A (OTA). In a direct assay with an OTA-specific aptamer, we demonstrated a quick and significant change of the optical signal in response to the maximum tolerable level of OTA concentration. The sensor regeneration is possible in urea solution. The developed platform enables a direct method of kinetic analysis of small molecules using a low-cost optical chip with a graphene-aptamer sensing layer.

4.
PLoS One ; 12(6): e0178355, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28570647

RESUMEN

We investigated toxicity of 2-3 layered >1 µm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we assessed exposure levels of particulate matter emitted during production of graphene in a clean room and in a normal industrial environment using chemical vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 µg/mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis.


Asunto(s)
Reacción de Fase Aguda , Grafito/toxicidad , Inflamación/patología , Pulmón/efectos de los fármacos , Mutágenos/toxicidad , Animales , Líquido del Lavado Bronquioalveolar , Femenino , Grafito/química , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Óxidos/química
5.
Sci Rep ; 7(1): 2419, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28546634

RESUMEN

The high-frequency performance of transistors is usually assessed by speed and gain figures of merit, such as the maximum oscillation frequency f max, cutoff frequency f T, ratio f max/f T, forward transmission coefficient S 21, and open-circuit voltage gain A v. All these figures of merit must be as large as possible for transistors to be useful in practical electronics applications. Here we demonstrate high-performance graphene field-effect transistors (GFETs) with a thin AlOx gate dielectric which outperform previous state-of-the-art GFETs: we obtained f max/f T > 3, A v > 30 dB, and S 21 = 12.5 dB (at 10 MHz and depending on the transistor geometry) from S-parameter measurements. A dc characterization of GFETs in ambient conditions reveals good current saturation and relatively large transconductance ~600 S/m. The realized GFETs offer the prospect of using graphene in a much wider range of electronic applications which require substantial gain.

6.
Biosens Bioelectron ; 89(Pt 1): 606-611, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26852830

RESUMEN

Sensitive and selective detection of cancer biomarkers is vital for the successful diagnosis of early stage cancer and follow-up treatment. Surface Plasmon Resonance (SPR) in combination with different amplification strategies is one of the analytical approaches allowing the screening of protein biomarkers in serum. Here we describe the development of a point-of-care sensor for the detection of folic acid protein (FAP) using graphene-based SPR chips. The exceptional properties of CVD graphene were exploited to construct a highly sensitive and selective SPR chip for folate biomarker sensing in serum. The specific recognition of FAP is based on the interaction between folic acid receptors integrated through π-stacking on the graphene coated SPR chip and the FAP analyte in serum. A simple post-adsorption of human serum:bovine serum albumin (HS:BSA) mixtures onto the folic acid modified sensor resulted in a highly anti-fouling interface, while keeping the sensing capabilities for folate biomarkers. This sensor allowed femtomolar (fM) detection of FAP, a detection limit well adapted and promising for quantitative clinical analysis.


Asunto(s)
Receptores de Folato Anclados a GPI/sangre , Ácido Fólico/química , Grafito/química , Resonancia por Plasmón de Superficie/métodos , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/sangre , Receptores de Folato Anclados a GPI/análisis , Humanos , Límite de Detección , Modelos Moleculares , Sistemas de Atención de Punto , Resonancia por Plasmón de Superficie/instrumentación , Propiedades de Superficie
7.
Environ Mol Mutagen ; 57(6): 469-82, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27189646

RESUMEN

Graphene and graphene oxide receive much attention these years, because they add attractive properties to a wide range of applications and products. Several studies have shown toxicological effects of other carbon-based nanomaterials such as carbon black nanoparticles and carbon nanotubes in vitro and in vivo. Here, we report in-depth physicochemical characterization of three commercial graphene materials, one graphene oxide (GO) and two reduced graphene oxides (rGO) and assess cytotoxicity and genotoxicity in the murine lung epithelial cell line FE1. The studied GO and rGO mainly consisted of 2-3 graphene layers with lateral sizes of 1-2 µm. GO had almost equimolar content of C, O, and H while the two rGO materials had lower contents of oxygen with C/O and C/H ratios of 8 and 12.8, respectively. All materials had low levels of endotoxin and low levels of inorganic impurities, which were mainly sulphur, manganese, and silicon. GO generated more ROS than the two rGO materials, but none of the graphene materials influenced cytotoxicity in terms of cell viability and cell proliferation after 24 hr. Furthermore, no genotoxicity was observed using the alkaline comet assay following 3 or 24 hr of exposure. We demonstrate that chemically pure, few-layered GO and rGO with comparable lateral size (> 1 µm) do not induce significant cytotoxicity or genotoxicity in FE1 cells at relatively high doses (5-200 µg/ml). Environ. Mol. Mutagen. 57:469-482, 2016. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc.


Asunto(s)
Daño del ADN , Células Epiteliales/efectos de los fármacos , Grafito/toxicidad , Nanopartículas/toxicidad , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Relación Dosis-Respuesta a Droga , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Cromatografía de Gases y Espectrometría de Masas , Grafito/química , Ratones , Microscopía Electrónica de Transmisión de Rastreo , Microscopía Electrónica de Transmisión , Nanopartículas/química , Óxidos/química , Óxidos/toxicidad , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo , Propiedades de Superficie
8.
Biology (Basel) ; 5(2)2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27043645

RESUMEN

Shear force exerted on uropathogenic Escherichia coli adhering to surfaces makes type-1 fimbriae stretch out like springs to catch on to mannosidic receptors. This mechanism is initiated by a disruption of the quaternary interactions between the lectin and the pilin of the two-domain FimH adhesin and transduces allosterically to the mannose-binding pocket of FimH to increase its affinity. Mannose-specific adhesion of 14 E. coli pathovars was measured under flow, using surface plasmon resonance detection on functionalized graphene-coated gold interfaces. Increasing the shear had important differential consequences on bacterial adhesion. Adherent-invasive E. coli, isolated from the feces and biopsies of Crohn's disease patients, consistently changed their adhesion behavior less under shear and displayed lower SPR signals, compared to E. coli opportunistically infecting the urinary tract, intestines or loci of knee and hip prostheses. We exemplified this further with the extreme behaviors of the reference strains UTI89 and LF82. Whereas their FimA major pilins have identical sequences, FimH of LF82 E. coli is marked by the Thr158Pro mutation. Positioned in the inter-domain region known to carry hot spots of mutations in E. coli pathotypes, residue 158 is indicated to play a structural role in the allosteric regulation of type-1 fimbriae-mediated bacterial adhesion.

9.
Opt Express ; 23(24): 30721-9, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26698704

RESUMEN

We demonstrate wafer-scale, non-contact mapping of essential carrier transport parameters, carrier mobility (µdrift), carrier density (Ns), DC sheet conductance (σdc), and carrier scattering time (τsc) in CVD graphene, using spatially resolved terahertz time-domain conductance spectroscopy. σdc and τsc are directly extracted from Drude model fits to terahertz conductance spectra obtained in each pixel of 10 × 10 cm2 maps with a 400 µm step size. σdc- and τsc-maps are translated into µdrift and Ns maps through Boltzmann transport theory for graphene charge carriers and these parameters are directly compared to van der Pauw device measurements on the same wafer. The technique is compatible with all substrate materials that exhibit a reasonably low absorption coefficient for terahertz radiation. This includes many materials used for transferring CVD graphene in production facilities as well as in envisioned products, such as polymer films, glass substrates, cloth, or paper substrates.

10.
ACS Appl Mater Interfaces ; 7(18): 9429-35, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25901791

RESUMEN

Chemical vapor deposition (CVD) of graphene on top of metallic foils is a technologically viable method of graphene production. Fabrication of microelectronic devices with CVD grown graphene is commonly done by using photolithography and deposition of metal contacts on top of the transferred graphene layer. This processing is potentially invasive for graphene, yields large spread in device parameters, and can inhibit up-scaling. Here we demonstrate an alternative process technology in which both lithography and contact deposition on top of graphene are prevented. First a prepatterned substrate is fabricated that contains all the device layouts, electrodes and interconnects. Then CVD graphene is transferred on top. Processing parameters are adjusted to yield a graphene layer that adopts the topography of the prepatterned substrate. The metal-graphene contact shows low contact resistances below 1 kΩ µm for CVD graphene devices. The conformal transfer technique is scaled-up to 150 mm wafers with statistically similar devices and with a device yield close to unity.

11.
Nanoscale ; 7(8): 3558-64, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25631337

RESUMEN

The sensitivity of graphene based devices to surface adsorbates and charge traps at the graphene/dielectric interface requires proper device passivation in order to operate them reproducibly under ambient conditions. Here we report on the use of atomic layer deposited aluminum oxide as passivation layer on graphene field effect devices (GFETs). We show that successful passivation produce hysteresis free DC characteristics, low doping level GFETs stable over weeks though operated and stored in ambient atmosphere. This is achieved by selecting proper seed layer prior to deposition of encapsulation layer. The passivated devices are also demonstrated to be robust towards the exposure to chemicals and heat treatments, typically used during device fabrication. Additionally, the passivation of high stability and reproducible characteristics is also shown for functional devices like integrated graphene based inverters.

12.
J Mater Chem B ; 3(3): 375-386, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-32262041

RESUMEN

The development of non-antibiotic based treatments against bacterial infections by Gram-negative uropathogenic E. coli is a complex task. New strategies to treat such infections are thus urgently needed. This report illustrates the development of pegylated reduced graphene oxide nanoparticles (rGO-PEG) and gold nanorods (Au NRs) coated with rGO-PEG (rGO-PEG-Au NRs) for the selective killing of uropathogenic E. coli UTI89. We took advantage of the excellent light absorption properties of rGO-PEG and Au NR particles in the near-infrared (NIR) region to photothermally kill Gram-negative pathogens up to 99% in 10 min by illumination of solutions containing the bacteria. The rGO-PEG-Au NRs demonstrated better photothermal efficiency towards E. coli than rGO-PEG. Targeted killing of E. coli UTI89 could be achieved with rGO-PEG-Au NRs functionalized with multimeric heptyl α-d-mannoside probes. This currently offers a unique biocompatible method for the ablation of pathogens with the opening of probably a new possibility for clinical treatments of patients with urinary infections.

13.
Nanoscale ; 7(4): 1491-500, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25504461

RESUMEN

The refractive index and extinction coefficient of chemical vapour deposition grown graphene are determined by ellipsometry analysis. Graphene films were grown on copper substrates and transferred as both monolayers and bilayers onto SiO2/Si substrates by using standard manufacturing procedures. The chemical nature and thickness of residual debris formed after the transfer process were elucidated using photoelectron spectroscopy. The real layered structure so deduced has been used instead of the nominal one as the input in the ellipsometry analysis of monolayer and bilayer graphene, transferred onto both native and thermal silicon oxide. The effect of these contamination layers on the optical properties of the stacked structure is noticeable both in the visible and the ultraviolet spectral regions, thus masking the graphene optical response. Finally, the use of heat treatment under a nitrogen atmosphere of the graphene-based stacked structures, as a method to reduce the water content of the sample, and its effect on the optical response of both graphene and the residual debris layer are presented. The Lorentz-Drude model proposed for the optical response of graphene fits fairly well the experimental ellipsometric data for all the analysed graphene-based stacked structures.

14.
Anal Chem ; 86(22): 11211-6, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25341125

RESUMEN

Strategies employed to interface biomolecules with nanomaterials have considerably advanced in recent years and found practical applications in many different research fields. The construction of nucleic acid modified interfaces together with the label-free detection of hybridization events has been one of the major research focuses in science and technology. In this paper, we demonstrate the high interest of graphene-on-metal surface plasmon resonance (SPR) interfaces for the detection of DNA hybridization events in the attomolar concentration range. The strategy consists on the noncovalent functionalization of graphene-coated SPR interfaces with gold nanostars carrying single-stranded DNA (ssDNA). Upon hybridization with its complementary DNA, desorption of the nanostructures takes place and thus enables the sensitive detection of the DNA hybridization event. The DNA sensor exhibits a detection limit of ≈500 aM for complementary DNA with a linear dynamic range up to 10(-8) M. This label-free DNA detection platform should spur off new interest toward the use of commercially available graphene-coated SPR interfaces.


Asunto(s)
ADN de Cadena Simple/análisis , Grafito/química , Hibridación de Ácido Nucleico , Resonancia por Plasmón de Superficie
15.
Sci Rep ; 4: 5380, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24946853

RESUMEN

The interface structure of graphene with thermally evaporated metal oxide layers, in particular molybdenum trioxide (MoO3), is studied combining photoemission spectroscopy, sheet resistance measurements and organic light emitting diode (OLED) characterization. Thin (<5 nm) MoO3 layers give rise to an 1.9 eV large interface dipole and a downwards bending of the MoO3 conduction band towards the Fermi level of graphene, leading to a near ideal alignment of the transport levels. The surface charge transfer manifests itself also as strong and stable p-type doping of the graphene layers, with the Fermi level downshifted by 0.25 eV and sheet resistance values consistently below 50 Ω/sq for few-layer graphene films. The combination of stable doping and highly efficient charge extraction/injection allows the demonstration of simplified graphene-based OLED device stacks with efficiencies exceeding those of standard ITO reference devices.

16.
Nano Lett ; 14(2): 450-5, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24447230

RESUMEN

Fabricating stable functional devices at the atomic scale is an ultimate goal of nanotechnology. In biological processes, such high-precision operations are accomplished by enzymes. A counterpart molecular catalyst that binds to a solid-state substrate would be highly desirable. Here, we report the direct observation of single Si adatoms catalyzing the dissociation of carbon atoms from graphene in an aberration-corrected high-resolution transmission electron microscope (HRTEM). The single Si atom provides a catalytic wedge for energetic electrons to chisel off the graphene lattice, atom by atom, while the Si atom itself is not consumed. The products of the chiseling process are atomic-scale features including graphene pores and clean edges. Our experimental observations and first-principles calculations demonstrated the dynamics, stability, and selectivity of such a single-atom chisel, which opens up the possibility of fabricating certain stable molecular devices by precise modification of materials at the atomic scale.


Asunto(s)
Grafito/química , Modelos Químicos , Impresión Molecular/métodos , Nanopartículas/química , Nanopartículas/ultraestructura , Silicio/química , Catálisis , Simulación por Computador , Ensayo de Materiales , Microscopía Electrónica/métodos , Modelos Moleculares , Propiedades de Superficie
17.
Nature ; 487(7405): 77-81, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-22722861

RESUMEN

The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons­coupled excitations of photons and charge carriers­in graphene. In this two-dimensional sheet of carbon atoms, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density. Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically, no experiments so far have directly resolved propagating plasmons in real space. Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light. We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short­more than 40 times smaller than the wavelength of illumination. We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume. The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors. This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light­matter interactions for quantum devices and biosensing applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA