Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 12(15)2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31349550

RESUMEN

In the 1980s, block masonry started to be widely used for new constructions in Italy's earthquake prone areas. However, recent seismic events demonstrated that block masonry buildings may need to be repaired after earthquakes due to cracking. Construction defects are the main cause for cracking of block work masonry. Carbon fiber reinforced polymer (CFRP) sheets have been used as a local repair method for non-defective and defective wall panels. An experimental program was formulated to investigate the shear behavior of block masonry walls repaired with CFRP sheets. A total of six wall panels were constructed in the laboratory and tested in shear (in-plane lateral loading). It was found that, although the control (non-defective) wall panels had a high ultimate load capacity, the use of CFRPs reduces the effects of construction defects and restores the lateral load capacity in non-defective walls. Overall, this research suggests that the use of epoxy-bonded CFRP sheets could be used for local repair of cracked wall panels.

2.
Anal Chem ; 86(12): 5758-65, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24820266

RESUMEN

In this study we report the exceptional potentiometric properties of pH microprobes made with nanostructured palladium hydride microelectrodes and demonstrate their application by monitoring pH variations resulting from a reaction confined in a porous medium. Their potentiometric response was found to be reproducible and stable over several hours but primarily Nernstian over a remarkably wide pH range, including alkaline conditions up to pH 14. Continuous operation was demonstrated by reloading hydrogen at regular intervals to maintain the correct hydride composition thereby alleviating the need for calibration. These properties were validated by detecting pH transients during the carbonation of Ca(OH)2 within a fibrous mesh. Experimental pHs recorded in situ were in excellent agreement with theoretical calculations for the CO2 partial pressures considered. Results also showed that the electrodes were sufficiently sensitive to differentiate between the formation of vaterite and calcite, two polymorphs of CaCO3. These nanostructured microelectrodes are uniquely suited to the determination of pH in highly alkaline solutions, particularly those arising from interfacial reactions at solid and porous surfaces and are thus highly appropriate as pH sensing tips in scanning electrochemical microscopy.

3.
Anal Chem ; 85(17): 8341-6, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23919805

RESUMEN

This study demonstrates how the potentiometric mode of the scanning electrochemical microscope (SECM) can be used to sensitively probe and alter the mixed potential due to two independent redox processes provided that the transport of one of the species involved is controlled by diffusion. This is illustrated with the discharge of hydrogen from nanostructured Pd hydride films deposited on the SECM tip. In deareated buffered solutions the open circuit potential of the PdH in equilibrium between its ß and α phases (OCP(ß→α)) does not depend on the tip-substrate distance while in aerated conditions it is found to be controlled by hindered diffusion of oxygen. Chronopotentiometric and amperometric measurements at several tip-substrate distances reveal how the flux of oxygen toward the Pd hydride film determines its potential. Linear sweep voltammetry shows that the polarization resistance increases when the tip approaches an inert substrate. The SECM methodology also demonstrates how dissolved oxygen affects the rate of hydrogen extraction from the Pd lattice. Over a wide potential window, the highly reactive nanostructure promotes the reduction of oxygen which rapidly discharges hydrogen from the PdH. The flux of oxygen toward the tip can be adjusted via hindered diffusion. Approaching the substrate decreases the flux of oxygen, lengthens the hydrogen discharge, and shifts OCP(ß→α) negatively. The results are consistent with a mixed potential due to the rate of oxygen reduction balancing that of the hydride oxidation. The methodology is generic and applicable to other mixed potential processes in corrosion or catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA