Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 16(5)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38787075

RESUMEN

Alternariol monomethyl-ether (AME), together with altenuene and alternariol, belongs to the Alternaria mycotoxins group, which can contaminate different substrates, including cereals. The aim of the present study was to obtain a deeper understanding concerning the effects of AME on pig intestinal health using epithelial intestinal cell lines as the data concerning the possible effects of Alternaria toxins on swine are scarce and insufficient for assessing the risk represented by Alternaria toxins for animal health. Our results have shown a dose-related effect on IPEC-1 cell viability, with an IC50 value of 10.5 µM. Exposure to the toxin induced an increase in total apoptotic cells, suggesting that AME induces programmed cell death through apoptosis based on caspase-3/7 activation in IPEC-1 cells. DNA and protein oxidative damage triggered by AME were associated with an alteration of the antioxidant response, as shown by a decrease in the enzymatic activity of catalase and superoxide dismutase. These effects on the oxidative response can be related to an inhibition of the Akt/Nrf2/HO-1 signaling pathway; however, further studies are needed in order to validate these in vitro data using in vivo trials in swine.


Asunto(s)
Apoptosis , Supervivencia Celular , Células Epiteliales , Lactonas , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Porcinos , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Lactonas/toxicidad , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo
2.
Vet Sci ; 11(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38250921

RESUMEN

At weaning, piglets are exposed to a large variety of stressors, from environmental/behavioral factors to nutritional stress. Weaning transition affects the gastrointestinal tract especially, resulting in specific disturbances at the level of intestinal morphology, barrier function and integrity, mucosal immunity and gut microbiota. All these alterations are associated with intestinal inflammation, oxidative stress and perturbation of intracellular signaling pathways. The nutritional management of the weaning period aims to achieve the reinforcement of intestinal integrity and functioning to positively modulate the intestinal immunity and that of the gut microbiota and to enhance the health status of piglets. That is why the current research is focused on the raw materials rich in phytochemicals which could positively modulate animal health. The composition analysis of fruit, vegetable and their by-products showed that identified phytochemicals could act as bioactive compounds, which can be used as modulators of weaning-induced disturbances in piglets. This review describes nutritional studies which investigated the effects of bioactive compounds derived from fruit (apple) and vegetables (carrot) or their by-products on the intestinal architecture and function, inflammatory processes and oxidative stress at the intestinal level. Data on the associated signaling pathways and on the microbiota modulation by bioactive compounds from these by-products are also presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA