Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pathogens ; 11(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35889991

RESUMEN

Tospoviruses infect numerous crop species worldwide, causing significant losses throughout the supply chain. As a defence mechanism, plants use RNA interference (RNAi) to generate virus-derived small-interfering RNAs (vsiRNAs), which target viral transcripts for degradation. Small RNA sequencing and in silico analysis of capsicum and N. benthamiana infected by tomato spotted wilt virus (TSWV) or capsicum chlorosis virus (CaCV) demonstrated the presence of abundant vsiRNAs, with host-specific differences evident for each pathosystem. Despite the biogenesis of vsiRNAs in capsicum and N. benthamiana, TSWV and CaCV viral loads were readily detectable. In response to tospovirus infection, the solanaceous host species also generated highly abundant virus-activated small interfering RNAs (vasiRNAs) against many endogenous transcripts, except for an N. benthamiana accession lacking a functional RDR1 gene. Strong enrichment for ribosomal protein-encoding genes and for many genes involved in protein processing in the endoplasmic reticulum suggested co-localisation of viral and endogenous transcripts as a basis for initiating vasiRNA biogenesis. RNA-seq and RT-qPCR-based analyses of target transcript expression revealed an inconsistent role for vasiRNAs in modulating gene expression in N. benthamiana, which may be characteristic of this tospovirus-host pathosystem.

2.
PLoS One ; 11(7): e0159085, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27398596

RESUMEN

BACKGROUND: Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. CONCLUSION/SIGNIFICANCE: DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops.


Asunto(s)
Capsicum/fisiología , Capsicum/virología , Perfilación de la Expresión Génica , Virus de Plantas/fisiología , Capsicum/inmunología , Cromosomas de las Plantas/genética , Interacciones Huésped-Patógeno , Inmunidad de la Planta
3.
Arch Virol ; 160(3): 869-72, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25559672

RESUMEN

The first complete genome sequence of capsicum chlorosis virus (CaCV) from Australia was determined using a combination of Illumina HiSeq RNA and Sanger sequencing technologies. Australian CaCV had a tripartite genome structure like other CaCV isolates. The large (L) RNA was 8913 nucleotides (nt) in length and contained a single open reading frame (ORF) of 8634 nt encoding a predicted RNA-dependent RNA polymerase (RdRp) in the viral-complementary (vc) sense. The medium (M) and small (S) RNA segments were 4846 and 3944 nt in length, respectively, each containing two non-overlapping ORFs in ambisense orientation, separated by intergenic regions (IGR). The M segment contained ORFs encoding the predicted non-structural movement protein (NSm; 927 nt) and precursor of glycoproteins (GP; 3366 nt) in the viral sense (v) and vc strand, respectively, separated by a 449-nt IGR. The S segment coded for the predicted nucleocapsid (N) protein (828 nt) and non-structural suppressor of silencing protein (NSs; 1320 nt) in the vc and v strand, respectively. The S RNA contained an IGR of 1663 nt, being the largest IGR of all CaCV isolates sequenced so far. Comparison of the Australian CaCV genome with complete CaCV genome sequences from other geographic regions showed highest sequence identity with a Taiwanese isolate. Genome sequence comparisons and phylogeny of all available CaCV isolates provided evidence for at least two highly diverged groups of CaCV isolates that may warrant re-classification of AIT-Thailand and CP-China isolates as unique tospoviruses, separate from CaCV.


Asunto(s)
Capsicum/virología , Genoma Viral , Enfermedades de las Plantas/virología , ARN Viral/genética , Análisis de Secuencia de ADN , Tospovirus/genética , Australia , Análisis por Conglomerados , ADN Intergénico , Genotipo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Homología de Secuencia , Tospovirus/aislamiento & purificación , Proteínas Virales/genética
4.
Plant Dis ; 93(7): 708-712, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30764380

RESUMEN

Tobacco streak virus (TSV) was found to commonly occur in Parthenium hysterophorus, as symptomless infections, in central Queensland, Australia across a large area infested with this weed. Several isolates of TSV collected across the geographic range of P. hysterophorus were found to share identical coat protein sequence with each other and with TSV from crop plants in the same area. Seed transmission of TSV in P. hysterophorus was found to occur at rates of 6.8 to 48%. There was almost no change in the rate of TSV seed transmission when P. hysterophorus seed was stored for up to 24½ months. Implications of this relationship between TSV and P. hysterophorus for the development of virus disease epidemics in surrounding crops are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA