Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 47(14): 5316-25, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23863381

RESUMEN

Sulfate-reducing permeable reactive zones (SR-PRZs) are microbially-driven anaerobic systems designed for the removal of heavy metals and sulfate in mine drainage. Environmental perturbations, such as oxygen exposure, may adversely affect system stability and long-term performance. The objective of this study was to examine the effect of two successive aerobic stress events on the performance and microbial community composition of duplicate laboratory-scale lignocellulosic SR-PRZs operated using the following microbial community management strategies: biostimulation with ethanol or carboxymethylcellulose; bioaugmentation with sulfate-reducing or cellulose-degrading enrichments; inoculation with dairy manure only; and no inoculation. A functional gene-based approach employing terminal restriction fragment length polymorphism and quantitative polymerase chain reaction targeting genes of sulfate-reducing (dsrA), cellulose-degrading (cel5, cel48), fermentative (hydA), and methanogenic (mcrA) microbes was applied. In terms of performance (i.e., sulfate removal), biostimulation with ethanol was the only strategy that clearly had an effect (positive) following exposure to oxygen. In terms of microbial community composition, significant shifts were observed over the course of the experiment. Results suggest that exposure to oxygen more strongly influenced microbial community shifts than the different microbial community management strategies. Sensitivity to oxygen exposure varied among different populations and was particularly pronounced for fermentative bacteria. Although the community structure remained altered after exposure, system performance recovered, indicating that SR-PRZ microbial communities were functionally redundant. Results suggest that pre-exposure to oxygen might be a more effective strategy to improve the resilience of SR-PRZ microbial communities relative to bioaugmentation or biostimulation.


Asunto(s)
Biodegradación Ambiental , Consorcios Microbianos/fisiología , Sulfatos/metabolismo , Etanol/farmacología , Fermentación , Expresión Génica , Genes , Lignina/metabolismo , Estiércol , Metano/metabolismo , Consorcios Microbianos/efectos de los fármacos , Consorcios Microbianos/genética , Minería , Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S , Estrés Fisiológico
2.
FEMS Microbiol Ecol ; 82(1): 135-47, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22587594

RESUMEN

Sulfate-reducing permeable reactive zones (SR-PRZs) depend upon a complex microbial community to utilize a lignocellulosic substrate and produce sulfides, which remediate mine drainage by binding heavy metals. To gain insight into the impact of the microbial community composition on the startup time and pseudo-steady-state performance, functional genes corresponding to cellulose-degrading (CD), fermentative, sulfate-reducing, and methanogenic microorganisms were characterized in columns simulating SR-PRZs using quantitative polymerase chain reaction (qPCR) and denaturing gradient gel electrophoresis (DGGE). Duplicate columns were bioaugmented with sulfate-reducing or CD bacteria or biostimulated with ethanol or carboxymethyl cellulose and compared with baseline dairy manure inoculum and uninoculated controls. Sulfate removal began after ~ 15 days for all columns and pseudo-steady state was achieved by Day 30. Despite similar performance, DGGE profiles of 16S rRNA gene and functional genes at pseudo-steady state were distinct among the column treatments, suggesting the potential to control ultimate microbial community composition via bioaugmentation and biostimulation. qPCR revealed enrichment of functional genes in all columns between the initial and pseudo-steady-state time points. This is the first functional gene-based study of CD, fermentative and sulfate-reducing bacteria and methanogenic archaea in a lignocellulose-based environment and provides new qualitative and quantitative insight into startup of a complex microbial system.


Asunto(s)
Archaea/metabolismo , Estiércol/microbiología , Sulfatos/metabolismo , Bacterias Reductoras del Azufre/metabolismo , Archaea/genética , Biodegradación Ambiental , Carboximetilcelulosa de Sodio/metabolismo , Electroforesis en Gel de Gradiente Desnaturalizante , Etanol/metabolismo , Metano/metabolismo , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Bacterias Reductoras del Azufre/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA