Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 13(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063383

RESUMEN

Pretreatment of grape pomace seeds with a pulsed electric field (PEF) was applied to improve the extraction yield of cold-pressed grape seed oil. The effects of different PEF conditions, electric field intensities (12.5, 14.0 and 15.6 kV/cm), and durations (15 and 30 min) on the oil chemical composition were also studied. All PEF pretreatments significantly increased the oil yield, flow rate and concentration of total sterols (p < 0.05). In addition, similar trends were observed for total tocochromanols and phenolic compounds, except for PEF pretreatment under the mildest conditions (12.5 kV/cm, 15 min) (p < 0.05). Notably, the application of 15.6 kV/cm for 30 min resulted in the highest relative increase in oil yield and flow rate (29.6% and 56.5%, respectively) and in the concentrations of total tocochromanols, nonflavonoids, and flavonoids (22.1%, 60.2% and 81.5%, respectively). In addition, the highest relative increase in the concentration of total sterols (25.4%) was achieved by applying 12.5 kV/cm for 30 min. The fatty acid composition of the grape seed oil remained largely unaffected by the PEF pretreatments. These results show that PEF pretreatment effectively improves both the yield and the bioactive properties of cold-pressed grape seed oil.

2.
Plants (Basel) ; 10(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34451543

RESUMEN

Climate change poses a serious threat to agricultural production. Water deficit in agricultural soils is one of the consequences of climate change that has a negative impact on crop growth and yield. Selenium (Se) is known to be involved in plant defense against biotic and abiotic stress through metabolic, structural, and physiological activity in higher plants. The aim of this study was to investigate the physiological response of Se-biofortified soybean (Glycine max (L.) Merrill) seedlings under osmotic stress. For this research, we used biofortified soybean grain obtained after foliar Se biofortification in 2020. The experiment was conducted in a growth chamber with two cultivars (Lucija and Sonja) grown on filter paper in three replicates. The experiment was carried out with two watering treatments: distilled water (PEG-0) and 2.5% polyethylene glycol 6000 (PEG-2.5) on Se-biofortified seeds (Se) and nonbiofortified seeds (wSe). Contents of lipid peroxidation product (LP), free proline (PRO), total phenolic content (TP), ferric reducing antioxidant power (FRAP), and ascorbic acid (AA) were analyzed in 7-days-old seedlings. Significant differences were detected in the Se content of soybean grains between the two cultivars. A milder reaction to PEG-2.5 was observed in cultivar Lucija in both Se and wSe treatments, which might represent the mitigating effects of Se on osmotic stress in this cultivar. Contrarily, in cultivar Sonja, Se adversely affected all analyzed traits in the PEG-2.5 treatment. Ultimately, Se is a pro-oxidant in Sonja, whereas it represents an anti-oxidant in Lucija. In conclusion, different soybean cultivars show contrasting physiological reactions to both osmotic stress and Se. However, the activation of antioxidant pathways in Sonja can also be interpreted as added value in soybean seedlings as a functional food.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA