Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 157(3): 1135-45, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26672805

RESUMEN

A sustained elevation of glucocorticoid production, associated with the establishment of insulin resistance (IR) could add to the deleterious effects of the IR state. The aim of this study is to analyze the consequences of long-term feeding with a sucrose-rich diet (SRD) on Pomc/ACTH production, define the underlying cellular processes, and determine the effects of moderate exercise (ME) on these parameters. Animals fed a standard chow with or without 30% sucrose in the drinking water were subjected to ME. Circulating hormone levels were determined, and pituitary tissues were processed and analyzed by immunobloting and quantitative real-time PCR. Parameters of oxidative stress (OxS), endoplasmic reticulum stress, and autophagy were also determined. Rats fed SRD developed a decrease in pituitary Pomc/ACTH expression levels, increased expression of antioxidant enzymes, and induction of endoplasmic reticulum stress and autophagy. ME prevented pituitary dysfunction as well as induction of antioxidant enzymes and autophagy. Reporter assays were performed in AtT-20 corticotroph cells incubated in the presence of palmitic acid. Pomc transcription was inhibited by palmitic acid-dependent induction of OxS and autophagy, as judged by the effect of activators and inhibitors of both processes. Long-term feeding with SRD triggers the generation of OxS and autophagy in the pituitary gland, which could lead to a decline in Pomc/ACTH/glucocorticoid production. These effects could be attributed to an increase in fatty acids availability to the pituitary gland. ME was able to prevent these alterations, suggesting additional beneficial effects of ME as a therapeutic strategy in the management of IR.


Asunto(s)
Hormona Adrenocorticotrópica/biosíntesis , Autofagia/genética , Sacarosa en la Dieta , Resistencia a la Insulina/genética , Estrés Oxidativo/genética , Condicionamiento Físico Animal , Adenohipófisis/metabolismo , Proopiomelanocortina/biosíntesis , ARN Mensajero/metabolismo , Hormona Adrenocorticotrópica/genética , Hormona Adrenocorticotrópica/metabolismo , Animales , Línea Celular Tumoral , Corticotrofos/metabolismo , Estrés del Retículo Endoplásmico/genética , Glucocorticoides/metabolismo , Immunoblotting , Masculino , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Endocrine ; 46(3): 659-67, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24272593

RESUMEN

The effect of lipopolysaccharide on the modulation of steroid production by adrenal cells has been recently acknowledged. The purpose of this study was to determine the in vivo effects of LPS on adrenal cyclooxygenase 2 (COX-2) expression, analyze its crosstalk with the nitric oxide synthase (NOS) system, and assess its involvement on the modulation of glucocorticoid production. Male Wistar rats were injected with LPS and with specific inhibitors for NOS and COX activities. PGE2 and corticosterone levels were determined by RIA. Protein levels were analyzed by immunoprecipitation and western blotting. Transfection assays were performed in murine adrenocortical Y1 cells. Results show that LPS treatment increases PGE2 production and COX-2 protein levels in the rat adrenal cortex. Systemic inhibition of COX-2 blunted the glucocorticoid response to ACTH, as well as the increase in NOS activity and the NOS-2 expression levels induced by LPS. Conversely, NOS inhibition prevented the LPS-dependent increase in PGE2 production, COX-2 protein levels, and the nitrotyrosine modification of COX-2 protein. Treatment of adrenocortical cells with a NO-donor significantly potentiated the LPS-dependent increase in NFκB activity and COX-2 expression levels. In conclusion, our results show a significant crosstalk between COX-2 and NOS in the adrenal cortex upon LPS stimulation, in which each activity has a positive impact on the other. In particular, as both the activities differently affect adrenal steroid production, we hypothesize that this kind of fine modulation enables the gland to adjust steroidogenesis to prevent either an excessive or an insufficient response to the endotoxin challenge.


Asunto(s)
Corteza Suprarrenal/metabolismo , Ciclooxigenasa 2/metabolismo , Lipopolisacáridos/farmacología , Óxido Nítrico Sintasa/metabolismo , Corteza Suprarrenal/efectos de los fármacos , Animales , Corticosterona/metabolismo , Dinoprostona/metabolismo , Inhibidores Enzimáticos/farmacología , Masculino , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA