RESUMEN
Diamante Lake located at 4589 m.a.s.l. in the Andean Puna constitutes an extreme environment. It is exposed to multiple extreme conditions such as an unusually high concentration of arsenic (over 300 mg L-1) and low oxygen pressure. Microorganisms thriving in the lake display specific genotypes that facilitate survival, which include at least a multitude of plasmid-encoded resistance traits. Hence, the genetic information provided by the plasmids essentially contributes to understand adaptation to different stressors. Though plasmids from cultivable organisms have already been analyzed to the sequence level, the impact of the entire plasmid-borne genetic information on such microbial ecosystem is not known. This study aims at assessing the plasmidome from Diamante Lake, which facilitates the identification of potential hosts and prediction of gene functions as well as the ecological impact of mobile genetic elements. The deep-sequencing analysis revealed a large fraction of previously unknown DNA sequences of which the majority encoded putative proteins of unknown function. Remarkably, functions related to the oxidative stress response, DNA repair, as well as arsenic- and antibiotic resistances were annotated. Additionally, all necessary capacities related to plasmid replication, mobilization and maintenance were detected. Sequences characteristic for megaplasmids and other already known plasmid-associated genes were identified as well. The study highlights the potential of the deep-sequencing approach specifically targeting plasmid populations as it allows to evaluate the ecological impact of plasmids from (cultivable and non-cultivable) microorganisms, thereby contributing to the understanding of the distribution of resistance factors within an extremophilic microbial community.
Asunto(s)
Bacterias/genética , ADN Bacteriano/análisis , Extremófilos/genética , Lagos/microbiología , Microbiota , Plásmidos/análisis , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Farmacorresistencia Bacteriana , Extremófilos/crecimiento & desarrollo , Extremófilos/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Plásmidos/genética , Plásmidos/aislamiento & purificación , Aguas del Alcantarillado/microbiologíaRESUMEN
Fungal rots are one of the main causes of large economic losses and deterioration in the quality and nutrient composition of fruits during the postharvest stage. The yeast Clavispora lusitaniae 146 has previously been shown to efficiently protect lemons from green mold caused by Penicillium digitatum. In this work, the effect of yeast concentration and exposure time on biocontrol efficiency was assessed; the protection of various citrus fruits against P. digitatum by C. lusitaniae 146 was evaluated; the ability of strain 146 to degrade mycotoxin patulin was tested; and the effect of the treatment on the sensory properties of fruits was determined. An efficient protection of lemons was achieved after minimum exposure to a relatively low yeast cell concentration. Apart from lemons, the yeast prevented green mold in grapefruits, mandarins, oranges, and tangerines, implying that it can be used as a broad-range biocontrol agent in citrus. The ability to degrade patulin indicated that strain 146 may be suitable for the control of further Penicillium species. Yeast treatment did not alter the sensory perception of the aroma of fruits. These results corroborate the potential of C. lusitaniae 146 for the control of postharvest diseases of citrus fruits and indicate its suitability for industrial-scale fruit processing.
RESUMEN
Mobile genetic elements, including plasmids, drive the evolution of prokaryotic genomes through the horizontal transfer of genes allowing genetic exchange between bacteria. Moreover, plasmids carry accessory genes, which encode functions that may offer an advantage to the host. Thus, it is expected that in a certain ecological niche, plasmids are enriched in accessory functions, which are important for their hosts to proliferate in that niche. Puquio de Campo Naranja is a high-altitude lake from the Andean Puna exposed to multiple extreme conditions, including high UV radiation, alkalinity, high concentrations of arsenic, heavy metals, dissolved salts, high thermal amplitude and low O2 pressure. Microorganisms living in this lake need to develop efficient mechanisms and strategies to cope under these conditions. The aim of this study was to characterize the plasmidome of microbialites from Puquio de Campo Naranja, and identify potential hosts and encoded functions using a deep-sequencing approach. The potential ecological impact of the plasmidome, including plasmids from cultivable and non-cultivable microorganisms, is described for the first time in a lake representing an extreme environment of the Puna. This study showed that the recovered genetic information for the plasmidome was novel in comparison to the metagenome derived from the same environment. The study of the total plasmid population allowed the identification of genetic features typically encoded by plasmids, such as resistance and virulence factors. The resistance genes comprised resistances to heavy metals, antibiotics and stress factors. These results highlight the key role of plasmids for their hosts and impact of extrachromosomal elements to thrive in a certain ecological niche.
RESUMEN
The two linear plasmids pLMA1 (109,112 bp) and pLMA7 (82,075 bp) from Micrococcus strains were isolated from a high-altitude lake in the Argentinean Puna, sequenced, and annotated. These extrachromosomal elements are probably conjugative and harbor genes potentially involved in coping with the harsh conditions in such extreme environments.
RESUMEN
Economic losses caused by postharvest diseases represent one of the main problems of the citrus industry worldwide. The major diseases affecting citrus are the "green mold" and "blue mold", caused by Penicillium digitatum and P. italicum, respectively. To control them, synthetic fungicides are the most commonly used method. However, often the emergence of resistant strains occurs and their use is becoming more restricted because of toxic effects and environmental pollution they generate, combined with trade barriers to international markets. The aim of this work was to isolate indigenous killer yeasts with antagonistic activity against fungal postharvest diseases in lemons, and to determine their control efficiency in in vitro and in vivo assays. Among 437 yeast isolates, 8.5% show to have a killer phenotype. According to molecular identification, based on the 26S rDNA D1/D2 domain sequences analysis, strains were identified belonging to the genera Saccharomyces, Wickerhamomyces, Kazachstania, Pichia, Candida and Clavispora. Killers were challenged with pathogenic molds and strains that caused the maximum in vitro inhibition of P. digitatum were selected for in vivo assays. Two strains of Pichia and one strain of Wickerhamomyces depicted a significant protection (p <0.05) from decay by P. digitatum in assays using wounded lemons. Thus, the native killer yeasts studied in this work showed to be an effective alternative for the biocontrol of postharvest fungal infections of lemons and could be promising agents for the development of commercial products for the biological control industry.