RESUMEN
We identified 3 clades of dengue virus serotype 3 belonging to genotype III isolated during 2019-2020 in Jamaica by using whole-genome sequencing and phylogenomic and phylogeographic analyses. The viruses likely originated from Asia in 2014. Newly expanded molecular surveillance efforts in Jamaica will guide appropriate public health responses.
Asunto(s)
Virus del Dengue , Dengue , Filogenia , Serogrupo , Virus del Dengue/genética , Virus del Dengue/clasificación , Jamaica/epidemiología , Humanos , Dengue/virología , Dengue/epidemiología , Genoma Viral , Genotipo , Filogeografía , Secuenciación Completa del GenomaRESUMEN
The first 18 months of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in Colombia were characterized by three epidemic waves. During the third wave, from March through August 2021, intervariant competition resulted in Mu replacing Alpha and Gamma. We employed Bayesian phylodynamic inference and epidemiological modeling to characterize the variants in the country during this period of competition. Phylogeographic analysis indicated that Mu did not emerge in Colombia but acquired increased fitness there through local transmission and diversification, contributing to its export to North America and Europe. Despite not having the highest transmissibility, Mu's genetic composition and ability to evade preexisting immunity facilitated its domination of the Colombian epidemic landscape. Our results support previous modeling studies demonstrating that both intrinsic factors (transmissibility and genetic diversity) and extrinsic factors (time of introduction and acquired immunity) influence the outcome of intervariant competition. This analysis will help set practical expectations about the inevitable emergences of new variants and their trajectories. IMPORTANCE Before the appearance of the Omicron variant in late 2021, numerous SARS-CoV-2 variants emerged, were established, and declined, often with different outcomes in different geographic areas. In this study, we considered the trajectory of the Mu variant, which only successfully dominated the epidemic landscape of a single country: Colombia. We demonstrate that Mu competed successfully there due to its early and opportune introduction time in late 2020, combined with its ability to evade immunity granted by prior infection or the first generation of vaccines. Mu likely did not effectively spread outside of Colombia because other immune-evading variants, such as Delta, had arrived in those locales and established themselves first. On the other hand, Mu's early spread within Colombia may have prevented the successful establishment of Delta there. Our analysis highlights the geographic heterogeneity of early SARS-CoV-2 variant spread and helps to reframe the expectations for the competition behaviors of future variants.
Asunto(s)
COVID-19 , Humanos , Teorema de Bayes , COVID-19/epidemiología , Colombia/epidemiología , SARS-CoV-2/genéticaRESUMEN
Arbovirus infections are frequent causes of acute febrile illness (AFI) in tropical countries. We conducted health facility-based AFI surveillance at four sites in Colombia (Cucuta, Cali, Villavicencio, Leticia) during 2019-2022. Demographic, clinical and risk factor data were collected from persons with AFI that consented to participate in the study (n = 2,967). Serologic specimens were obtained and tested for multiple pathogens by RT-PCR and rapid test (Antigen/IgM), with 20.7% identified as dengue positive from combined testing. Oropouche virus (OROV) was initially detected in serum by metagenomic next-generation sequencing (mNGS) and virus target capture in a patient from Cúcuta. Three additional infections from Leticia were confirmed by conventional PCR, sequenced, and isolated in tissue culture. Phylogenetic analysis determined there have been at least two independent OROV introductions into Colombia. To assess OROV spread, a RT-qPCR dual-target assay was developed which identified 87/791 (10.9%) viremic cases in AFI specimens from Cali (3/53), Cucuta (3/19), Villavicencio (38/566), and Leticia (43/153). In parallel, an automated anti-nucleocapsid antibody assay detected IgM in 27/503 (5.4%) and IgG in 92/568 (16.2%) patients screened, for which 24/68 (35.3%) of PCR positives had antibodies. Dengue was found primarily in people aged <18 years and linked to several clinical manifestations (weakness, skin rash and petechiae), whereas Oropouche cases were associated with the location, climate phase, and odynophagia symptom. Our results confirm OROV as an emerging pathogen and recommend increased surveillance to determine its burden as a cause of AFI in Colombia.
Asunto(s)
Infecciones por Bunyaviridae , Humanos , Colombia/epidemiología , Filogenia , Infecciones por Bunyaviridae/complicaciones , Infecciones por Bunyaviridae/epidemiologíaRESUMEN
Classical swine fever (CSF) is, without any doubt, one of the most devasting viral infectious diseases affecting the members of Suidae family, which causes a severe impact on the global economy. The reemergence of CSF virus (CSFV) in several countries in America, Asia, and sporadic outbreaks in Europe, sheds light about the serious concern that a potential global reemergence of this disease represents. The negative aspects related with the application of mass stamping out policies, including elevated costs and ethical issues, point out vaccination as the main control measure against future outbreaks. Hence, it is imperative for the scientific community to continue with the active investigations for more effective vaccines against CSFV. The current review pursues to gather all the available information about the vaccines in use or under developing stages against CSFV. From the perspective concerning the evolutionary viral process, this review also discusses the current problematic in CSF-endemic countries.
RESUMEN
Mycoplasma gallisepticum (MG) is among the most significant problems in the poultry industry worldwide, representing a serious threat to international trade. Despite the fact that the mgc2 gene has been widely used for diagnostic and molecular characterization purposes, there is a lack of evidence supporting the reliability of this gene as a marker for molecular epidemiology approaches. Therefore, the current study aimed to assess the accuracy of the mgc2 gene for phylogenetic, phylodynamic, and phylogeographic evaluations. Furthermore, the global phylodynamic expansion of MG is described, and the origin and extension of the outbreak caused by MG in Ecuador were tracked and characterized. The results obtained strongly supported the use of the mgc2 gene as a reliable phylogenetic marker and accurate estimator for the temporal and phylogeographic structure reconstruction of MG. The phylodynamic analysis denoted the failures in the current policies to control MG and highlighted the imperative need to implement more sensitive methodologies of diagnosis and more efficient vaccines. Framed in Ecuador, the present study provides the first piece of evidence of the circulation of virulent field MG strains in Ecuadorian commercial poultry. The findings derived from the current study provide novel and significant insights into the origin, diversification, and evolutionary process of MG globally.
RESUMEN
Classical swine fever (CSF), caused by CSF virus (CSFV), is considered one of the most important infectious diseases with devasting consequences for the pig industry. Recent reports describe the emergence of new CSFV strains resulting from the action of positive selection pressure, due mainly to the bottleneck effect generated by ineffective vaccination. Even though a decrease in the genetic diversity of the positively selected CSFV strains has been observed by several research groups, there is little information about the effect of this selective force on the virulence degree, antigenicity and pathogenicity of this type of strains. Hence, the aim of the current study was to determine the effect of the positive selection pressure on these three parameters of CSFV strains, emerged as result of the bottleneck effects induced by improper vaccination in a CSF-endemic area. Moreover, the effect of the positively selected strains on the epidemiological surveillance system was assessed. By the combination of in vitro, in vivo and immunoinformatic approaches, we revealed that the action of the positive selection pressure induces a decrease in virulence and alteration in pathogenicity and antigenicity. However, we also noted that the evolutionary process of CSFV, especially in segregated microenvironments, could contribute to the gain-fitness event, restoring the highly virulent pattern of the circulating strains. Besides, we denoted that the presence of low virulent strains selected by bottleneck effect after inefficient vaccination can lead to a relevant challenge for the epidemiological surveillance of CSF, contributing to under-reports of the disease, favouring the perpetuation of the virus in the field. In this study, B-cell and CTL epitopes on the E2 3D-structure model were also identified. Thus, the current study provides novel and significant insights into variation in virulence, pathogenesis and antigenicity experienced by CSFV strains after the positive selection pressure effect.
Asunto(s)
Virus de la Fiebre Porcina Clásica/patogenicidad , Peste Porcina Clásica/genética , Selección Genética , Proteínas del Envoltorio Viral/genética , Animales , Peste Porcina Clásica/virología , Enfermedades Endémicas , Evolución Molecular , Vigilancia de la Población , Porcinos , VirulenciaRESUMEN
The current global conditions, which include intensive globalization, climate changes, and viral evolution among other factors, have led to an increased emergence of viruses and new viral diseases; RNA viruses are key drivers of this evolution. Laboratory networks that are linked to central reference laboratories are required to conduct both active and passive environmental surveillance of this complicated global viral environment. These tasks require a continuous exchange of strains or field samples between different diagnostic laboratories. The shipment of these samples on dry ice represents both a biological hazard and a general health risk. Moreover, the requirement to ship on dry ice could be hampered by high costs, particularly in underdeveloped countries or regions located far from each other. To solve these issues, the shipment of RNA isolated from viral suspensions or directly from field samples could be a useful way to share viral genetic material. However, extracted RNA stored in aqueous solutions, even at -70 °C, is highly prone to degradation. The current study evaluated different RNA storage conditions for safety and feasibility for future use in molecular diagnostics. The in vitro RNA-transcripts obtained from an inactivated highly pathogenic avian influenza (HPAI) H5N1 virus was used as a model. The role of secondary structures in the protection of the RNA was also explored. Of the conditions evaluated, the dry pellet matrix was best able to protect viral RNA under extreme storage conditions. This method is safe, cost-effective and assures the integrity of RNA samples for reliable molecular diagnosis. This study aligns with the globally significant "Global One Health" paradigm, especially with respect to the diagnosis of emerging diseases that require confirmation by reference laboratories.
RESUMEN
In 2010, new Chinese strains of porcine epidemic diarrhea virus (PEDV), clinically more severe than the classical strains, emerged. These strains were spread to United States in 2013 through an intercontinental transmission from China with further spreading across the world, evidencing the emergent nature of these strains. In the present study, an analysis of PEDV field sequences from Ecuador was conducted by comparing all the PEDV S gene sequences available in the GenBank database. Phylogenetic comparisons and Bayesian phylogeographic inference based on complete S gene sequences were also conducted to track the origin and putative route of PEDV. The sequence from the PED-outbreak in Ecuador was grouped into the clade II of PEDV genogroup 2a together with other sequences of isolates from Mexico, Canada, and United States. The phylogeographic study revealed the emergence of the Chinese PEDV strains, followed by spreading to US in 2013, from US to Korea, and later the introduction of PEDV to Canada, Mexico, and Ecuador directly from the US. The sources of imports of live swine in Ecuador in 2014 were mainly from Chile and US. Thus, this movement of pigs is suggested as the main way for introducing PEDV to Ecuador.
Asunto(s)
Infecciones por Coronavirus/genética , Filogenia , Virus de la Diarrea Epidémica Porcina/genética , Enfermedades de los Porcinos/genética , Proteínas Virales/genética , Animales , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Ecuador/epidemiología , Virus de la Diarrea Epidémica Porcina/patogenicidad , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/transmisiónRESUMEN
BACKGROUND: Infectious bursal disease (IBD) is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV) strains worldwide. METHODOLOGY/PRINCIPAL FINDINGS: Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population. CONCLUSIONS/SIGNIFICANCE: This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for molecular epidemiology studies.
Asunto(s)
Genoma Viral/genética , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Enfermedades de las Aves de Corral/virología , Animales , Secuencia de Bases , Infecciones por Birnaviridae/epidemiología , Pollos/virología , Marcadores Genéticos/genética , Epidemiología Molecular , Filogenia , Alineación de SecuenciaRESUMEN
Classical swine fever (CSF) is a devastating animal disease of great economic impact worldwide. In many countries, CSF has been endemic for decades, and vaccination of domestic pigs is one of the measures to control the disease. Consequently, differentiating infected from vaccinated animals by antibody ELISA screening is not applicable. In some countries, such as Cuba, lack of molecular techniques for sensitive, rapid and reliable detection of virus genomes is a critical point. To overcome this problem, an easy-to-use one-tube assay based on the loop-mediated isothermal amplification (LAMP) principle has been developed for detection of the genome of CSF virus (CSFV) of endemic Cuban genotype 1.4 isolates. The assay reliably detected recent isolates from three different regions of Cuba with an analytical sensitivity 10-100 times lower than that of quantitative reverse transcription RT-qPCR. Diagnostic test sensitivity was examined using reference sera from two groups of pigs experimentally infected with Cuban virulent strain CSF0705 "Margarita" and the recent field isolate CSF1058 "Pinar del Rio". Differences in pathogenicity of the two viruses were reflected in the clinical course of disease as well as in virus loads of blood samples. Low viral RNA loads in samples from pigs infected with the field isolate caused serious detection problems in RT-LAMP as well as in RT-qPCR. Thus, it will be necessary in future research to focus on targeted sampling of diseased animals and to restrict diagnosis to the herd level in order to establish LAMP as an efficient tool for diagnosing CSF under field conditions.
Asunto(s)
Virus de la Fiebre Porcina Clásica/genética , Peste Porcina Clásica/virología , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Animales , Secuencia de Bases , Peste Porcina Clásica/diagnóstico , Cuba/epidemiología , Genotipo , Datos de Secuencia Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Alineación de Secuencia/veterinaria , Porcinos/virologíaRESUMEN
In this report, we describe the emergence of reassorted H1N1 swine influenza virus, originated from a reassortment event between the H1N1 pandemic influenza virus (H1N1p/2009) and endemic swine influenza virus in Cuban swine population. In November 2010, a clinical respiratory outbreak was reported on a pig fattening farm in Cuba. Phylogenetic analysis showed that all the genes of one of the isolate obtained, with the exception of neuraminidase, belonged to the H1N1p/2009 cluster. This finding suggests that H1N1pdm has been established in swine and has become a reservoir of reassortment that may produce new viruses with both animal and public health risks.
Asunto(s)
Genoma Viral , Subtipo H1N1 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/epidemiología , Enfermedades de los Porcinos/epidemiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cuba/epidemiología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Datos de Secuencia Molecular , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/virología , Filogenia , Porcinos , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/virologíaRESUMEN
Infectious bronchitis is a highly contagious viral disease of poultry caused by infectious bronchitis virus (IBV) and is considered one of the most economically important viral diseases of chickens. Control of IBV has been attempted using live attenuated and inactivated vaccines. Live attenuated vaccines of the Massachusetts (Mass.) serotype are the most commonly used for this purpose. Due to the continuous emergence of new variants of the infectious bronchitis virus, the identification of the type of IBV causing an outbreak in commercial poultry is important in the selection of the appropriate vaccine(s) capable of inducing a protective immune response. The present work was aimed at developing and evaluating a duplex SYBR Green I-based real-time RT-PCR (rRT-PCR) assay for the simultaneous detection and differentiation of Mass. and non-Mass. serotypes of IBV. The duplex rRT-PCR yielded curves of amplification with two specific melting curves (Tm1 = 83 °C ± 0.5 °C and Tm2 = 87 °C ± 0.5 °C) and only one specific melting peak (Tm = 87 °C ± 0.5 °C) when the IBV Mass. serotype and IBV non-Mass. serotype strains were evaluated, respectively. The detection limit of the assay was 8.2 gene copies/µL based on in vitro transcribed RNA and 0.1 EID50/mL. The assay was able to detect all the IBV strains assessed and discriminated well among the IBV Mass. and the IBV non-Mass. serotypes strains. In addition, amplification curves were not obtained with any of the other viruses tested. From the 300 field samples tested, the duplex rRT-PCR yielded a total of 80 samples that were positive for IBV (26.67%), 73 samples identified as the IBV Mass. serotype and seven samples as identified as the IBV non-Mass. serotype. A comparison of the performance of test as assessed with field samples revealed that the duplex rRT-PCR detected a higher number of IBV-positive samples than when conventional RT-PCR or virus isolation tests were used. The duplex rRT-PCR presented here is a useful tool for the rapid identification of outbreaks and for surveillance programmes during IB-suspected cases, particularly in countries with a vaccination control programme.
Asunto(s)
Infecciones por Coronavirus/veterinaria , Virus de la Bronquitis Infecciosa/clasificación , Virus de la Bronquitis Infecciosa/aislamiento & purificación , Enfermedades de las Aves de Corral/virología , ARN Viral/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Benzotiazoles , Pollos/virología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Diaminas , Brotes de Enfermedades/veterinaria , Virus de la Bronquitis Infecciosa/genética , Massachusetts , Compuestos Orgánicos , Enfermedades de las Aves de Corral/epidemiología , Quinolinas , ARN Viral/genética , Serotipificación , Vacunas Atenuadas , Vacunas de Productos Inactivados , Vacunas ViralesRESUMEN
BACKGROUND: Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. METHODOLOGY/PRINCIPAL FINDINGS: Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide.
Asunto(s)
Virus de la Enfermedad Infecciosa de la Bolsa/genética , Proteínas Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Animales , Teorema de Bayes , Infecciones por Birnaviridae/virología , Pollos , Cuba , Bases de Datos Genéticas , Evolución Molecular , Virus de la Enfermedad Infecciosa de la Bolsa/clasificación , Virus de la Enfermedad Infecciosa de la Bolsa/aislamiento & purificación , Virus de la Enfermedad Infecciosa de la Bolsa/metabolismo , Filogenia , Filogeografía , Enfermedades de las Aves de Corral/virología , ARN Viral/aislamiento & purificación , ARN Viral/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/genéticaRESUMEN
The presence of infection by human T cell lymphotropic virus type 1 (HTLV-1) in Cuba has been previously documented. However, genetic information on the strains that circulate in the Cuban people remains unknown. The present work constitutes the first study of phylogenetic relationship of HTLV-1 Cuban isolates. Twelve Cuban patients who were diagnosed with HTLV-1 infection and had different clinical manifestations were studied. The 3' LTR sequences were analyzed for the construction of a phylogenetic tree with reference sequences of HTLV-1 of different geographic origins. Phylogenetic analysis of the 3' LTR gene showed that all the Cuban samples clustered in the Transcontinental subgroup of the Cosmopolitan subtype. Phylogenetic analysis suggests multiple introductions of HTLV-1 in Cuba as well as a possible African origin of the samples. The results of the study will reinforce the program of epidemic surveillance of the infection in Cuba.
Asunto(s)
Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/clasificación , Adulto , Anciano , Anciano de 80 o más Años , Cuba/epidemiología , Femenino , Genotipo , Infecciones por HTLV-I/epidemiología , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADNRESUMEN
Bovine coronavirus has been associated with diarrhoea in newborn calves, winter dysentery in adult cattle and respiratory tract infections in calves and feedlot cattle. In Cuba, the presence of BCoV was first reported in 2006. Since then, sporadic outbreaks have continued to occur. This study was aimed at deepening the knowledge of the evolution, molecular markers of virulence and epidemiology of BCoV in Cuba. A total of 30 samples collected between 2009 and 2011 were used for PCR amplification and direct sequencing of partial or full S gene. Sequence comparison and phylogenetic studies were conducted using partial or complete S gene sequences as phylogenetic markers. All Cuban bovine coronavirus sequences were located in a single cluster supported by 100% bootstrap and 1.00 posterior probability values. The Cuban bovine coronavirus sequences were also clustered with the USA BCoV strains corresponding to the GenBank accession numbers EF424621 and EF424623, suggesting a common origin for these viruses. This phylogenetic cluster was also the only group of sequences in which no recombination events were detected. Of the 45 amino acid changes found in the Cuban strains, four were unique.
Asunto(s)
Enfermedades de los Bovinos/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Coronavirus Bovino/clasificación , Coronavirus Bovino/genética , Glicoproteínas de Membrana/genética , Proteínas del Envoltorio Viral/genética , Secuencia de Aminoácidos , Animales , Bovinos , Análisis por Conglomerados , Coronavirus Bovino/aislamiento & purificación , Disentería/veterinaria , Disentería/virología , Evolución Molecular , Heces/virología , Datos de Secuencia Molecular , Filogenia , Recombinación Genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Glicoproteína de la Espiga del CoronavirusRESUMEN
Increasing diversity among H5 hemagglutinin (HA) subtype avian influenza (AI) viruses has resulted in the need of novel sensitive and specific molecular assays. In this study, an SYBR Green-based real-time reverse transcription-PCR (RRT-PCR) assay was developed for the detection of H5 subtype AI virus. Sequence analysis of the Mexican lineage H5N2 isolates (subgroup B) revealed several mismatches in the primer/hydrolysis probe set reported in the commonly used RRT-PCR assay for the detection of H5 North American lineage. The present assay was designed to circumvent the challenge that these viruses represent for the specific detection of H5 subtype AI viruses. This RRT-PCR assay successfully detected a range of different H5 subtype AI strains from both Eurasian and North American lineages representing different avian H5 HA clades from diverse geographical locations. The sensitivity of the present method was determined by using in vitro-transcribed RNA and 10-fold serial dilutions of titrated AI viruses. High sensitivity levels were obtained, with limits of detection of 10(0) 50% egg infectious dose (EID50)/mL and 4.2 gene copies/µl. The linear ranges of the assay span within 10(6)-10(0) EID50/mL and 10(6)-10(0) gene copies/µl. The results obtained from this method were directly compared with those of the H5 RRT-PCR assay recommended by the OIE. The comparison was performed with 110 tracheal and cloacal swabs from various bird species collected during field and laboratory investigations in Eurasia and Africa in 2006 and 2008 and showed 100% agreement. This assay is recommended as an alternative method, also allowing a 'double check' approach detection, to be use mainly in outbreak scenarios with higher risk of poultry infections by Central American/Caribbean H5 AI viruses.
Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Virus de la Influenza A/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Virus de la Influenza A/aislamiento & purificaciónRESUMEN
The emergence of new infectious bronchitis virus (IBV) genotypes or serotypes along with the poor cross-protection observed among IBV serotypes have complicated the avian infectious bronchitis (IB) control programs in different geographic regions. In Cuba, the lack of genetic information regarding IBV and the increasing epidemiological importance of this virus in Cuban chicken flocks demand further characterization of IBV isolates. In the present work, studies of genetic diversity and phylogenetic relationships among recent IBV isolates from Cuban chicken flocks showing respiratory disorders were performed. Two putative genotypes genetically different to the Massachusetts genotype H120 strain used in the Cuban vaccination program were found in the flocks assessed. In addition, a potential nephropathogenic IBV isolate was found by first time in Cuba.
Asunto(s)
Pollos , Enfermedades Transmisibles Emergentes/veterinaria , Infecciones por Coronavirus/virología , Genotipo , Virus de la Bronquitis Infecciosa/genética , Enfermedades de las Aves de Corral/virología , Animales , Infecciones por Coronavirus/epidemiología , Cuba/epidemiología , Regulación Viral de la Expresión Génica/fisiología , Filogenia , Enfermedades de las Aves de Corral/epidemiología , Proteínas Virales/genética , Proteínas Virales/metabolismoRESUMEN
Multiple viral infections are common in pigs under intensive production conditions. All five of the viruses included in this study are associated with multifactorial diseases that cause significant economic losses in swine farming worldwide. The development is described of a novel multiple real-time PCR system based on the use of SYBR Green I that allows the simultaneous detection and differentiation of porcine circovirus 2 (PCV-2), porcine parvovirus (PPV), pseudorabies virus (PRV) and Torque teno sus virus species 1 and 2 (TTSuV1 and TTSuV2) in pigs. The method was able to distinguish between all five viral agents, and tests of other DNA viruses proved the specificity of the system. The multiple real-time PCR system was sensitive, as the limits of detection ranged from 3.65×10(3) to 5.04×10(3) copies of DNA template per reaction. The coefficients of variation were low for both intra-assay and inter-assay variability. In addition, the results of the multiple real-time PCR system tests were 100% consistent with previous results based on specific PCR assay testing of field samples. This method could be a useful tool for epidemiological studies and disease management.
Asunto(s)
Infecciones por Virus ADN/veterinaria , Virus ADN/aislamiento & purificación , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Enfermedades de los Porcinos/virología , Virología/métodos , Animales , Benzotiazoles , Cartilla de ADN/genética , Infecciones por Virus ADN/virología , Virus ADN/clasificación , Virus ADN/genética , ADN Viral/química , ADN Viral/genética , Diaminas , Datos de Secuencia Molecular , Compuestos Orgánicos/metabolismo , Quinolinas , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Coloración y Etiquetado/métodos , PorcinosRESUMEN
In this study, 40 pigs with respiratory and wasting disorders from Cuban swine herds were screened by PCR for the presence of TTSuV1, TTSuV2, PCV-2, PPV and CSFV in spleen samples. The variability of the porcine TTSuV sequences obtained was investigated by phylogenetic analysis. This study showed for the first time that TTSuV1 and TTSuV2 were present in Cuban swine herds. The investigation revealed the following infection rates: TTSuV1 40%, TTSuV2 37.5%, PCV-2 70%, PPV 37.5% and CSFV in 52.5%. The presence of two or more of these viruses at different rates in the same spleen samples was revealed. Also, a higher genetic diversity of TTSuV2 sequences was observed regarding TTSuV1 sequences.
Asunto(s)
Infecciones por Virus ADN/veterinaria , Bazo/virología , Enfermedades de los Porcinos/virología , Torque teno virus/clasificación , Torque teno virus/aislamiento & purificación , Animales , Secuencia de Bases , Circovirus/aislamiento & purificación , Virus de la Fiebre Porcina Clásica/aislamiento & purificación , Infecciones por Virus ADN/diagnóstico , Infecciones por Virus ADN/virología , ADN Viral/genética , Parvovirus Porcino/aislamiento & purificación , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Porcinos , Enfermedades de los Porcinos/diagnóstico , Torque teno virus/genéticaRESUMEN
Porcine circovirus type 2 (PCV2) is the essential etiological infectious agent of postweaning multisystemic wasting syndrome (PMWS), which is considered one of the most economically important swine diseases worldwide. In this study, a comparison between methodologies based on classical phylogenetic trees and networks to infer the origin of PCV2 in Cuba was performed. In addition, the mechanisms supporting the genetic variability of Cuban PCV2 populations were investigated. A retrospective study, using pig sera collected in Cuba from 1993 to 2004, to evaluate the presence of PCV2 genome and PCV2-specific antibodies was also conducted and revealed a lack of evidence of PCV2 infection in Cuban swine from years 1993 to 2004. A total of 24 complete Cuban PCV2 sequences collected between 2005 and 2009 from different regions of the country were analyzed. Three classical methods of phylogenetic analysis, namely Neighbour-Joining, Maximum Parsimony and Bayesian Inference, as well as haplotype network construction, were used. Whereas the classical phylogenetic trees suggested different origins for the Cuban PCV2 strains, the haplotype network revealed a direct connection between all the Cuban sequences in agreement with the obtained epidemiological and viral sequence data. Moreover, the importation of pigs carried out in 2005 from the Quebec-Ontario region, Canada, seems to be the most likely origin of PCV2 in Cuba. Likewise, the genetic variability of Cuban PCV2 sequences was supported by geographic segregation and positive selection pressure with estimated rates of nucleotide substitution on the order of 3.12×10(-3) and 6.57×10(-3) substitutions/site/year, which are closer to those reported for RNA viruses.