Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Physiol Behav ; 253: 113854, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35609721

RESUMEN

Dopamine (DA) neurons in the ventral tegmental area (VTA) innervating several limbic and neocortical regions of the mammalian brain have long been implicated in motivation, rewarding and aversive behaviors, and memory processing. Recently, we demonstrated that somatodendritic release of DA in the VTA regulates the formation and maintenance of appetitive long-term memories (LTM). However, less is known about the impact of DA neurotransmission in the VTA on aversive LTM. Here, we describe the modulation of negative-valence memories by D1/D5-type DA (D1R)-receptor-mediated neurotransmission in the VTA. As aversive stimuli elicit both active and passive behavioral responses, we used two single-trial aversive training protocols: inhibitory avoidance task and conditioned place aversion. We bilaterally microinfused SCH23390, an antagonist of D1R, into the VTA immediately after training and found that DA neurotransmission in the VTA modulates LTM consolidation and persistence of aversive experiences. Together with previous findings demonstrating that D1R-mediated DA neurotransmission in the medial prefrontal cortex and hippocampus is involved in the formation and persistence of LTM for aversive events, our present results indicate that memory processing of environmental stimuli with negative-valence depends on the integration of information mediated by D1R activation in both the VTA region and in selected downstream target areas.


Asunto(s)
Dopamina , Área Tegmental Ventral , Animales , Condicionamiento Psicológico , Neuronas Dopaminérgicas , Mamíferos , Transmisión Sináptica , Área Tegmental Ventral/fisiología
2.
Neurobiol Learn Mem ; 186: 107544, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34737148

RESUMEN

Recognition memory can rely on three components: "what", "where" and "when". Recently we demonstrated that the anterior retrosplenial cortex (aRSC), like the perirhinal cortex (PRH) and unlike the hippocampus (HP), is required for consolidation of the "what" component. Here, we aimed at studying which brain structures interact with the aRSC to process object recognition (OR) memory in rats. We studied the interaction of six brain structures that are connected to the aRSC during OR memory processing: PRH, medial prefrontal cortex (mPFC), anteromedial thalamic nuclei (AM), medial entorhinal cortex (MEC), anterior cingulate cortex (ACC) and the dorsal HP (dHP). We previously described the role of the PRH and dHP, so we first studied the participation of the mPFC, AM, MEC and ACC in OR memory consolidation by bilateral microinfusions of the GABAA receptor agonist muscimol. We observed an impairment in OR long-term memory (LTM) when inactivating the mPFC, the AM and the MEC, but not the ACC. Then, we studied the functional connections by unilateral inactivation of the aRSC and each one of the six structures in the same (ipsilateral) or the opposite (contralateral) hemisphere. Our results showed an amnesic LTM effect in rats with ipsilateral inactivations of aRSC-PRH, aRSC-mPFC, aRSC-AM, or aRSC-MEC. On the other hand, we observed memory impairment when aRSC-ACC were inactivated in opposite hemispheres, and no effect when the aRSC-dHP connection was inactivated. Thus, our ipsilateral inactivation findings reveal that the aRSC and, at least one brain region required in OR LTM processing are essential to consolidate OR memory. In conclusion, our results show that several cortico-cortical and cortico-thalamic pathways are important for OR memory consolidation.


Asunto(s)
Corteza Entorrinal/fisiología , Giro del Cíngulo/fisiología , Memoria a Largo Plazo/fisiología , Corteza Prefrontal/fisiología , Reconocimiento en Psicología/fisiología , Animales , Agonistas de Receptores de GABA-A/farmacología , Hipocampo/fisiología , Bombas de Infusión , Masculino , Muscimol/farmacología , Ratas
3.
Front Hum Neurosci ; 15: 729051, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621161

RESUMEN

Retrieval constitutes a highly regulated and dynamic phase in memory processing. Its rapid temporal scales require a coordinated molecular chain of events at the synaptic level that support transient memory trace reactivation. AMPA receptors (AMPAR) drive the majority of excitatory transmission in the brain and its dynamic features match the singular fast timescales of memory retrieval. Here we provide a review on AMPAR contribution to memory retrieval regarding its dynamic movements along the synaptic compartments, its changes in receptor number and subunit composition that take place in activity dependent processes associated with retrieval. We highlight on the differential regulations exerted by AMPAR subunits in plasticity processes and its impact on memory recall.

4.
Mol Neurobiol ; 58(4): 1711-1722, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33244735

RESUMEN

Recently, it was reported that mechanistic/mammalian target of rapamycin complex 1 (mTORC1) activity during memory retrieval is required for normal expression of aversive and non-aversive long-term memories. Here we used inhibitory-avoidance task to evaluate the potential mechanisms by which mTORC1 signaling pathway participates in memory retrieval. First, we studied the role of GluA-subunit trafficking during memory recall and its relationship with mTORC1 pathway. We found that pretest intrahippocampal infusion of GluR23É£, a peptide that selectively blocks GluA2-containing AMPA receptor (AMPAR) endocytosis, prevented the amnesia induced by the inhibition of mTORC1 during retrieval. Additionally, we found that GluA1 levels decreased and GluA2 levels increased at the hippocampal postsynaptic density subcellular fraction of rapamycin-infused animals during memory retrieval. GluA2 levels remained intact while GluA1 decreased at the synaptic plasma membrane fraction. Then, we evaluated the requirement of AMPAR subunit expression during memory retrieval. Intrahippocampal infusion of GluA1 or GluA2 antisense oligonucleotides (ASO) 3 h before testing impaired memory retention. The memory impairment induced by GluA2 ASO before retrieval was reverted by GluA23É£ infusion 1 h before testing. However, AMPAR endocytosis blockade was not sufficient to compensate GluA1 synthesis inhibition. Our work indicates that de novo GluA1 and GluA2 AMPAR subunit expression is required for memory retrieval with potential different roles for each subunit and suggests that mTORC1 might regulate AMPAR trafficking during retrieval. Our present results highlight the role of mTORC1 as a key determinant of memory retrieval that impacts the recruitment of different AMPAR subunits.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Memoria a Largo Plazo , Recuerdo Mental , Receptores AMPA/metabolismo , Transducción de Señal , Animales , Reacción de Prevención/efectos de los fármacos , Endocitosis/efectos de los fármacos , Masculino , Trastornos de la Memoria/fisiopatología , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Largo Plazo/fisiología , Recuerdo Mental/efectos de los fármacos , Recuerdo Mental/fisiología , Modelos Biológicos , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología
5.
Sci Rep ; 10(1): 4002, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152383

RESUMEN

The retrosplenial cortex (RSC) is implicated on navigation and contextual memory. Lesions studies showed that the RSC shares functional similarities with the hippocampus (HP). Here we evaluated the role of the anterior RSC (aRSC) in the "what" and "where" components of recognition memory and contrasted it with that of the dorsal HP (dHP). Our behavioral and molecular findings show functional differences between the aRSC and the dHP in recognition memory. The inactivation of the aRSC, but not the dHP, impairs the consolidation and expression of the "what" memory component. In addition, object recognition task is accompanied by c-Fos levels increase in the aRSC. Interestingly, we found that the aRSC is recruited to process the "what" memory component only if it is active during acquisition. In contrast, both the aRSC and dHP are required for encoding the "where" component, which correlates with c-Fos levels increase. Our findings introduce a novel role of the aRSC in recognition memory, processing not only the "where", but also the "what" memory component.


Asunto(s)
Corteza Cerebral/fisiología , Conducta Exploratoria/fisiología , Memoria a Largo Plazo/fisiología , Reconocimiento en Psicología/fisiología , Percepción Visual/fisiología , Animales , Reacción de Prevención , Giro del Cíngulo/fisiología , Hipocampo/fisiología , Masculino , Ratas , Ratas Wistar
6.
Sci Rep ; 8(1): 8759, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884898

RESUMEN

Understanding how stored information emerges is a main question in the neurobiology of memory that is now increasingly gaining attention. However, molecular events underlying this memory stage, including involvement of protein synthesis, are not well defined. Mammalian target of rapamycin complex 1 (mTORC1), a central regulator of protein synthesis, has been implicated in synaptic plasticity and is required for memory formation. Using inhibitory avoidance (IA), we evaluated the role of mTORC1 in memory retrieval. Infusion of a selective mTORC1 inhibitor, rapamycin, into the dorsal hippocampus 15 or 40 min but not 3 h before testing at 24 h reversibly disrupted memory expression even in animals that had already expressed IA memory. Emetine, a general protein synthesis inhibitor, provoked a similar impairment. mTORC1 inhibition did not interfere with short-term memory retrieval. When infused before test at 7 or 14 but not at 28 days after training, rapamycin impaired memory expression. mTORC1 blockade in retrosplenial cortex, another structure required for IA memory, also impaired memory retention. In addition, pretest intrahippocampal rapamycin infusion impaired object location memory retrieval. Our results support the idea that ongoing protein synthesis mediated by activation of mTORC1 pathway is necessary for long but not for short term memory.


Asunto(s)
Hipocampo/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Memoria a Largo Plazo , Animales , Hipocampo/efectos de los fármacos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Ratas Wistar , Sirolimus/administración & dosificación , Sirolimus/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA