Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mater Sci Eng C Mater Biol Appl ; 80: 688-697, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28866216

RESUMEN

Biocompatible, biodegradable and stimuli-responsive nanomaterials can be used as drug carriers and to achieve controlled drug delivery, which is crucial for treating tumors and lowering drug side effects. Calcium phosphate (CaP) nanoparticles and poly(acrylic acid) (PAA) hydrogels can be used as biocompatible and pH-responsive drug carriers. In this study, based on the ultrasound effect, PAA/CaP hybrid nanogels (approximately 100nm, PDI<0.2) are obtained via the cross-linking of CaP nanoparticles and PAA molecules between the Ca2+ ions and -COOH groups. The PAA/CaP hybrid nanogels show good stability in biological media as well as no hemolysis and no cytotoxicity to L02 cells. Moreover, the PAA/CaP hybrid nanogels display an enhanced loading capacity (approximately 32%) for doxorubicin hydrochloride (DOX) compared to pure CaP nanoparticles (approximately 7.5%) and a pH-controlled drug release due to their dissolution in acidic environment. DOX can be delivered into cancer cells by the PAA/CaP hybrid nanogels, which show an inhibitory effect comparable to that of free DOX, although the inhibitory effect is delayed due to the slow release of DOX from the carriers. In vivo, the PAA/CaP hybrid nanogels cannot avoid the capture by the reticuloendothelial system; however, they show passive tumor targeting ability. In brief, the biocompatible, biodegradable and pH-responsive PAA/CaP hybrid nanogels have the potential to act as drug carriers for controlled drug release.


Asunto(s)
Polietilenglicoles , Polietileneimina , Resinas Acrílicas , Fosfatos de Calcio , Doxorrubicina , Portadores de Fármacos , Concentración de Iones de Hidrógeno , Nanogeles , Ultrasonido
2.
ACS Appl Mater Interfaces ; 8(16): 10212-9, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27043792

RESUMEN

Biocompatible, biodegradable, and luminescent nano material can be used as an alternative bioimaging agent for early cancer diagnosis, which is crucial to achieve successful treatment. Hydroxyapatite (HAP) nanocyrstals have good biocompatibility and biodegradability, and can be used as an excellent host for luminescent rare earth elements. In this study, based on the energy transfer from Gd(3+) to Eu(3+), the luminescence enhanced imaging agent of Eu/Gd codoping HAP (HAP:Eu/Gd) nanocrystals are obtained via coprecipitation with plate-like shape and no change in crystal phase composition. The luminescence can be much elevated (up to about 120%) with a nonlinear increase versus Gd doping content, which is due to the energy transfer ((6)PJ of Gd(3+) → (5)HJ of Eu(3+)) under 273 nm and the possible combination effect of the cooperative upconversion and the successive energy transfer under 394 nm, respectively. Results demonstrate that the biocompatible HAP:Eu/Gd nanocrystals can successfully perform cell labeling and in vivo imaging. The intracellular HAP:Eu/Gd nanocrystals display good biodegradability with a cumulative degradation of about 65% after 72 h. This biocompatible, biodegradable, and luminescence enhanced HAP:Eu/Gd nanocrystal has the potential to act as a fluorescent imaging agent in vitro and in vivo.


Asunto(s)
Nanopartículas del Metal , Supervivencia Celular , Durapatita , Europio , Gadolinio , Humanos , Luminiscencia
3.
ACS Appl Mater Interfaces ; 7(43): 23819-23, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26495748

RESUMEN

One major challenge for application of hydroxyapatite nanoparticles (nHAP) in nanomedicine is the quantitative detection method. Herein, we exploited one quantitative detection method for nHAP based on the Eu(3+) fluorescent labeling via a simple chemical coprecipitation method. The trace amount of nHAP in cells and tissues can be quantitatively detected on the basis of the fluorescent quantitative determination of Eu(3+) ions in nHAP crystal lattice. The lowest concentration of Eu(3+) ions that can be quantitatively detected is 0.5 nM using DELFIA enhancement solution. This methodology can be broadly applicable for studying the tissue distribution and metabolization of nHAP in vivo.


Asunto(s)
Durapatita/química , Europio/química , Nanopartículas/química , Cristalización , Colorantes Fluorescentes/química , Humanos , Concentración de Iones de Hidrógeno , Iones , Microscopía Electrónica de Transmisión , Nanomedicina/métodos , Tamaño de la Partícula , Soluciones , Espectrometría de Fluorescencia , Distribución Tisular , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA