Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Anat ; 240(2): 330-338, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34498271

RESUMEN

In adult humans, the orbits vary mostly in their orientation in relation to the frontal bone profile, while the orientation of the cranial base and face are associated with the anteroposterior dimensions of the parietal bone. Here we investigate the effect of parietal bone length on the orientation of the orbits, addressing craniofacial integration and head orientation. We applied shape analysis to a sample of computed tomography scans from 30 adult modern humans, capturing the outlines of the parietal and frontal bones, the orbits, and the lateral and midline cranial base, to investigate shape variation, covariation, and modularity. Results show that the orientation of the orbits varies in accordance with the anterior cranial base, and in association with changes in parietal bone longitudinal extension. Flatter, elongated parietal bones are associated with downwardly oriented orbits and cranial bases. Modularity analysis points to a significant integration among the orbits, anterior cranial base, and the frontal profile. While the orbits are morphologically integrated with the adjacent structures in terms of shape, the association with parietal bone size depends on the spatial relationship between the two blocks. Complementary changes in orbit and parietal bone might play a role in accommodating craniofacial variability and may contribute to maintain the functional axis of the head. To better understand how skull morphology and head posture relate, future studies should account for the spatial relationship between the head and the neck.


Asunto(s)
Hueso Parietal , Cráneo , Adulto , Cara/anatomía & histología , Hueso Frontal , Cabeza , Humanos , Hueso Parietal/diagnóstico por imagen , Cráneo/anatomía & histología , Cráneo/diagnóstico por imagen , Base del Cráneo/anatomía & histología
2.
J Hum Evol ; 142: 102770, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32247107

RESUMEN

The modern human brain and braincase have a characteristic globular shape including parietal and cerebellar bulging. In contrast, Neanderthals, although having similar endocranial volume, displayed more elongated endocrania with flatter parietal and cerebellar regions. Based on endocranial imprints, we compare the parietal lobe morphology of modern humans and Neanderthals, as this brain region is central to several cognitive functions including tool use and visual imaging. In paleoneurology, shape analyses of endocasts are based either on anatomical landmarks that represent endocranial surface features homologous to cortical convolutions (impressions of brain gyri and sulci) or on dense meshes of semilandmarks that capture overall endocranial shape. Previous analyses using the former suggested that modern humans have relatively longer and taller parietal lobes than extinct human species, while the latter emphasized parietal bulging without a significant size difference of parietal regions. In the present study, we combine both anatomical landmarks and surface semilandmarks to investigate the morphological differences of the parietal lobes between modern humans and Neanderthals. Despite limitations by landmark uncertainty, our analyses were able to detect and confirm average different parietal shapes, with modern humans displaying taller and anteroposteriorly extended parietal lobes. We also show mean size differences, with modern humans displaying slightly larger surface areas on the dorsal posterior parietal region, and on a lateral region comprising the supramarginal gyrus, angular gyrus, and intraparietal sulcus. While we observed average differences in the parietal form between the two species, their ranges of distribution overlap, indicating the differences could be a matter of degree. Thus, further analyses on intraspecific variation in parietal lobe morphology within modern human brains should help understand the differences between globular and elongated endocrania. This is crucial because changes to the parietal cortex might affect associative and integrative functions between somatic and visual primary inputs.


Asunto(s)
Hombre de Neandertal/anatomía & histología , Lóbulo Parietal/anatomía & histología , Animales , Evolución Biológica , Humanos
3.
Am J Primatol ; 81(7): e23025, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31241198

RESUMEN

In extant primates, the posterior parietal cortex is involved in visuospatial integration, attention, and eye-hand coordination, which are crucial functions for foraging and feeding behaviors. Paleoneurology studies brain evolution through the analysis of endocasts, that is molds of the inner surface of the braincase. These may preserve imprints of cortical structures, such as sulci, which might be of interest for locating the boundaries of major cortical regions. Old World monkeys (Cercopithecidae) represent an interesting zoological group for evolutionary studies, because of their diverse ecologies and locomotor behaviors. In this study, we quantify parietal lobe variation within the cercopithecid family, in a sample of 30 endocasts including 11 genera and 17 species, by combining landmark-based and landmark-free geometric morphometric analyses. More specifically, we quantitatively assess variation of the parietal proportions based on landmarks placed on reliable anatomical references and of parietal lobe surface morphology through deformation-based methods. The main feature associated with the cercopithecid endocranial variation regards the inverse proportions of parietal and occipital lobes, with colobines, Theropithecus, and Papio displaying relatively larger parietal lobes and smaller occipital lobes compared with cercopithecins. The parietal surface is anteroposteriorly longer and mediolaterally flatter in colobines, while longitudinally shorter but laterally bulging in baboons. Large parietal lobes in colobines and baboons are likely to be independent evolutionary traits, and not necessarily associated with analogous functions or morphogenetic mechanisms.


Asunto(s)
Cercopithecidae/anatomía & histología , Lóbulo Parietal/anatomía & histología , Animales , Evolución Biológica , Encéfalo/anatomía & histología , Cercopithecidae/clasificación , Cráneo/anatomía & histología
4.
J Anat ; 231(6): 947-960, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29027198

RESUMEN

The orbits and eyes of modern humans are situated directly below the frontal lobes and anterior to the temporal lobes. Contiguity between these orbital and cerebral elements could generate spatial constraints, and potentially lead to deformation of the eye and reduced visual acuity during development. In this shape analysis we evaluate whether and to what extent covariation exists between ocular morphology and the size and spatial position of the frontal and temporal areas in adult modern humans. Magnetic resonance imaging (MRI) was used to investigate patterns of variation among the brain and eyes, while computed tomography (CT) was used to compare cranial morphology in this anatomical region among modern humans, extinct hominids and chimpanzees. Seventeen landmarks and semi-landmarks that capture the outline of the eye, frontal lobe, anterior fossa/orbital roof and the position of the temporal tips were sampled using lateral scout views in two dimensions, after projection of the average grayscale values of each hemisphere, with midsagittal and parasagittal elements overlapped onto the same plane. MRI results demonstrated that eye position in adult humans varies most with regard to its horizontal distance from the temporal lobes and, secondly, in its vertical distance from the frontal lobes. Size was mainly found to covary with the distance between the eye and temporal lobes. Proximity to these cerebral lobes may generate spatial constraints, as some ocular deformation was observed. Considering the CT analysis, modern humans vary most with regard to the orientation of the orbits, while interspecific variation is mainly associated with separation between the orbits and endocranial elements. These findings suggest that size and position of the frontal and temporal lobes can affect eye and orbit morphology, though potential effects on eye shape require further study. In particular, possible effects of these spatial and allometric relationships on the eye and vision should be examined using ontogenetic samples, vision parameters such as refractive error in diopters, and three-dimensional approaches that include measures of extraocular soft tissues within the orbit.


Asunto(s)
Ojo/anatomía & histología , Lóbulo Frontal/anatomía & histología , Órbita/anatomía & histología , Lóbulo Temporal/anatomía & histología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Fósiles/anatomía & histología , Humanos , Masculino , Persona de Mediana Edad , Cráneo/anatomía & histología , Adulto Joven
5.
Brain Behav Evol ; 90(3): 255-263, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29065406

RESUMEN

The precuneus is a major element of the superior parietal lobule, positioned on the medial side of the hemisphere and reaching the dorsal surface of the brain. It is a crucial functional region for visuospatial integration, visual imagery, and body coordination. Previously, we argued that the precuneus expanded in recent human evolution, based on a combination of paleontological, comparative, and intraspecific evidence from fossil and modern human endocasts as well as from human and chimpanzee brains. The longitudinal proportions of this region are a major source of anatomical variation among adult humans and, being much larger in Homo sapiens, is the main characteristic differentiating human midsagittal brain morphology from that of our closest living primate relative, the chimpanzee. In the current shape analysis, we examine precuneus variation in non-human primates through landmark-based models, to evaluate the general pattern of variability in non-human primates, and to test whether precuneus proportions are influenced by allometric effects of brain size. Results show that precuneus proportions do not covary with brain size, and that the main difference between monkeys and apes involves a vertical expansion of the frontal and occipital regions in apes. Such differences might reflect differences in brain proportions or differences in cranial architecture. In this sample, precuneus variation is apparently not influenced by phylogenetic or allometric factors, but does vary consistently within species, at least in chimpanzees and macaques. This result further supports the hypothesis that precuneus expansion in modern humans is not merely a consequence of increasing brain size or of allometric scaling, but rather represents a species-specific morphological change in our lineage.


Asunto(s)
Lóbulo Parietal/anatomía & histología , Primates/anatomía & histología , Animales , Evolución Biológica , Encéfalo/anatomía & histología , Fósiles , Hominidae/anatomía & histología , Humanos/anatomía & histología , Macaca/anatomía & histología , Tamaño de los Órganos/fisiología , Pan troglodytes/anatomía & histología , Lóbulo Parietal/fisiología , Filogenia , Cráneo/anatomía & histología , Especificidad de la Especie
6.
J Morphol ; 278(10): 1312-1320, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28573741

RESUMEN

Modern humans have evolved bulging parietal areas and large, projecting temporal lobes. Both changes, largely due to a longitudinal expansion of these cranial and cerebral elements, were hypothesized to be the result of brain evolution and cognitive variations. Nonetheless, the independence of these two morphological characters has not been evaluated. Because of structural and functional integration among cranial elements, changes in the position of the temporal poles can be a secondary consequence of parietal bulging and reorientation of the head axis. In this study, we use geometric morphometrics to test the correlation between parietal shape and the morphology of the endocranial base in a sample of adult modern humans. Our results suggest that parietal proportions show no correlation with the relative position of the temporal poles within the spatial organization of the endocranial base. The vault and endocranial base are likely to be involved in distinct morphogenetic processes, with scarce or no integration between these two districts. Therefore, the current evidence rejects the hypothesis of reciprocal morphological influences between parietal and temporal morphology, suggesting that evolutionary spatial changes in these two areas may have been independent. However, parietal bulging exerts a visible effect on the rotation of the cranial base, influencing head position and orientation. This change can have had a major relevance in the reorganization of the head functional axis.


Asunto(s)
Lóbulo Parietal/anatomía & histología , Cráneo/anatomía & histología , Lóbulo Temporal/anatomía & histología , Adulto , Animales , Femenino , Humanos , Masculino
7.
Ann Anat ; 211: 120-128, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28279731

RESUMEN

Recent analyses have suggested that the size and proportions of the precuneus are remarkably variable among adult humans, representing a major source of geometrical difference in midsagittal brain morphology. The same area also represents the main midsagittal brain difference between humans and chimpanzees, being more expanded in our species. Enlargement of the upper parietal surface is a specific feature of Homo sapiens, when compared with other fossil hominids, suggesting the involvement of these cortical areas in recent modern human evolution. Here, we provide a survey on midsagittal brain morphology by investigating whether precuneus size represents the largest component of variance within a larger and racially diverse sample of 265 adult humans. Additionally, we investigate the relationship between precuneus shape variation and folding patterns. Precuneus proportions are confirmed to be a major source of human brain variation even when racial variability is considered. Larger precuneus size is associated with additional precuneal gyri, generally in its anterior district. Spatial variation is most pronounced in the dorsal areas, with no apparent differences between hemispheres, between sexes, or among different racial groups. These dorsal areas integrate somatic and visual information together with the lateral elements of the parietal cortex, representing a crucial node for self-centered mental imagery. The histological basis and functional significance of this intra-specific variation in the upper precuneus remains to be evaluated.


Asunto(s)
Modelos Anatómicos , Lóbulo Parietal/anatomía & histología , Grupos Raciales/estadística & datos numéricos , Adolescente , Distribución por Edad , Simulación por Computador , Femenino , Georgia/epidemiología , Humanos , Masculino , Tamaño de los Órganos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución por Sexo , Adulto Joven
8.
Ann Anat ; 208: 85-93, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27210059

RESUMEN

The precuneus represents a relevant cortical component of the parietal lobes. It is involved in visuospatial integration, imagery and simulation, self-awareness, and it is a main node of the Default Mode Network. Its morphology is extremely variable among adult humans, and it has been hypothesized to have undergone major morphological changes in the evolution of Homo sapiens. Recent studies have evidenced a marked variation also associated with its sulcal patterns. The present survey contributes to add further information on this topic, investigating the extension of its main folds, their geometrical influence on the lateral parietal areas, and the relationships with the sulcal schemes. The subparietal sulcus, on average, extends 14mm in its anterior and middle regions and 11mm in its posterior area. The precuneal area extends 36mm above this sulcus. The subparietal sulcus is generally wider on the right hemisphere. Males have larger values than females, but differences are not significant. Sulcal pattern is not correlated with the size of the subparietal sulcus extension. There is a lack of consistent correspondence between hemispheres in the sulcal patterns, pointing further towards a notable individual variability and random asymmetries. The vertical extension of the precuneus influences the height and proportions of the upper parietal profile, but the lateral parietal outline is not sensitive to precuneal variation. There is no correlation between external cortical shape and the size of the subparietal sulcus. Morphological analyses of the precuneus must be integrated with studies on histological factors involved in its variability and, ultimately, with analyses on possible relationships with functional factors.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Anatómicos , Lóbulo Parietal/anatomía & histología , Adulto , Femenino , Humanos , Masculino , Tamaño de los Órganos/fisiología , Lóbulo Parietal/fisiología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA