Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Venom Anim Toxins Incl Trop Dis, v. 26, e20190050, fev. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2943

RESUMEN

Background: Between 40,000-70,000 people die yearly of rabies, an incurable disease. Besides post-bite vaccination, no treatment is available for it. Methods: First, virus dilution for antiviral effects in mice was determined. Then, animals were treated as follows: control (NaCl 250 µL/animal/day); bufotenine (0.63, 1.05 and 2.1 mg in 250 µL of NaCl/animal/day); rabies (10-6,82CVS dilution); and test (10-6,82 CVS dilution and bufotenine, in the above-mentioned doses). Animals were observed daily for 21 days or until the 3rd stage of rabies infection. Twitch-tension and liposome studies were applied to understand the possible interaction of bufotenine with receptors, particularly acetylcholine. Results: Bufotenine was able to increase the survival rate of intracerebrally virus-infected mice from 15 to 40%. Bufotenine did not seem to interfere with the acetylcholine response in the skeletal muscle, indicating that its mechanism of action is not blocking the virus entrance due to nAChR antagonism. By analyzing liposomes, we could observe that bufotenine did not passively penetrates cell membranes, indicating the necessity of complementary structures to cell penetration. Conclusions: Bufotenine is a promising candidate for drug development. After further chemical modification, it might be possible to dissociate minor side effects, increase efficiency, efficacy and pharmacokinetics, yielding a true anti-rabies drug.

2.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17445

RESUMEN

Background: Between 40,000-70,000 people die yearly of rabies, an incurable disease. Besides post-bite vaccination, no treatment is available for it. Methods: First, virus dilution for antiviral effects in mice was determined. Then, animals were treated as follows: control (NaCl 250 µL/animal/day); bufotenine (0.63, 1.05 and 2.1 mg in 250 µL of NaCl/animal/day); rabies (10-6,82CVS dilution); and test (10-6,82 CVS dilution and bufotenine, in the above-mentioned doses). Animals were observed daily for 21 days or until the 3rd stage of rabies infection. Twitch-tension and liposome studies were applied to understand the possible interaction of bufotenine with receptors, particularly acetylcholine. Results: Bufotenine was able to increase the survival rate of intracerebrally virus-infected mice from 15 to 40%. Bufotenine did not seem to interfere with the acetylcholine response in the skeletal muscle, indicating that its mechanism of action is not blocking the virus entrance due to nAChR antagonism. By analyzing liposomes, we could observe that bufotenine did not passively penetrates cell membranes, indicating the necessity of complementary structures to cell penetration. Conclusions: Bufotenine is a promising candidate for drug development. After further chemical modification, it might be possible to dissociate minor side effects, increase efficiency, efficacy and pharmacokinetics, yielding a true anti-rabies drug.

3.
Zoonoses Public Health ; 66(1): 47-59, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30288933

RESUMEN

Rabies virus (RABV) does not persist in the environment as it is a very fragile agent. The primary hosts are mammalian species in the orders Carnivora and Chiroptera. Since the late 1980s, RABV has been isolated from non-human primates, Callithrix jacchus (the white-tufted marmoset), in four coastal states (Rio Grande do Norte, Ceará, Piauí and Pernambuco) in north-eastern Brazil, where this species is indigenous. The original habitat of C. jacchus consisted of two Brazilian biomes, the Atlantic Forest and the Caatinga. However, these marmosets have since adapted to other ecosystems as a result of human activities. Between 1988 and 1989, RABV isolates were obtained from white-tufted marmosets in the state of Rio Grande do Norte, but antigenic and genetic identification studies were not conducted at that time. In the following years, three additional states reported cases (Ceará, Piauí and Pernambuco). In two of these states (Ceará and Piauí), human cases of rabies transmitted by marmosets were reported. According to Brazilian Health Ministry data, at least 19 human cases in which this species was the source of infection were registered in between 1990 and 2016. Recent findings in laboratory tests of 12 rabid samples from humans and marmosets and the regional transmission among these animals for over 20 years, together with the gradual increase in the affected geographic area, support the concept of the emergence of a new RABV reservoir. Regional tourism, the wild animal trade and the cultural practice of maintaining these animals as pets, particularly in coastal regions, appear to be major risk factors for the increase in human cases. Additional epidemiological and ecological studies are required to better understand local disease dynamics and to identify ideal opportunities for prevention and control of this fatal infection.


Asunto(s)
Callithrix , Reservorios de Enfermedades/veterinaria , Enfermedades de los Monos/virología , Virus de la Rabia/aislamiento & purificación , Rabia/veterinaria , Sustitución de Aminoácidos , Animales , Antígenos Virales , Brasil/epidemiología , Reservorios de Enfermedades/virología , Genoma Viral , Humanos , Enfermedades de los Monos/epidemiología , Filogenia , Rabia/epidemiología , Rabia/virología , Virus de la Rabia/genética
4.
Zoonoses Public Health, v. 66, n. 1, p. 47-59, fev. 2019
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2661

RESUMEN

Rabies virus (RABV) does not persist in the environment as it is a very fragile agent. The primary hosts are mammalian species in the orders Carnivora and Chiroptera. Since the late 1980s, RABV has been isolated from non-human primates, Callithrix jacchus (the white-tufted marmoset), in four coastal states (Rio Grande do Norte, Ceará, Piauí and Pernambuco) in north-eastern Brazil, where this species is indigenous. The original habitat of C. jacchus consisted of two Brazilian biomes, the Atlantic Forest and the Caatinga. However, these marmosets have since adapted to other ecosystems as a result of human activities. Between 1988 and 1989, RABV isolates were obtained from white-tufted marmosets in the state of Rio Grande do Norte, but antigenic and genetic identification studies were not conducted at that time. In the following years, three additional states reported cases (Ceará, Piauí and Pernambuco). In two of these states (Ceará and Piauí), human cases of rabies transmitted by marmosets were reported. According to Brazilian Health Ministry data, at least 19 human cases in which this species was the source of infection were registered in between 1990 and 2016. Recent findings in laboratory tests of 12 rabid samples from humans and marmosets and the regional transmission among these animals for over 20 years, together with the gradual increase in the affected geographic area, support the concept of the emergence of a new RABV reservoir. Regional tourism, the wild animal trade and the cultural practice of maintaining these animals as pets, particularly in coastal regions, appear to be major risk factors for the increase in human cases. Additional epidemiological and ecological studies are required to better understand local disease dynamics and to identify ideal opportunities for prevention and control of this fatal infection.

5.
Zoonoses Public Health ; 66(1): p. 47-59, 2019.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15807

RESUMEN

Rabies virus (RABV) does not persist in the environment as it is a very fragile agent. The primary hosts are mammalian species in the orders Carnivora and Chiroptera. Since the late 1980s, RABV has been isolated from non-human primates, Callithrix jacchus (the white-tufted marmoset), in four coastal states (Rio Grande do Norte, Ceará, Piauí and Pernambuco) in north-eastern Brazil, where this species is indigenous. The original habitat of C. jacchus consisted of two Brazilian biomes, the Atlantic Forest and the Caatinga. However, these marmosets have since adapted to other ecosystems as a result of human activities. Between 1988 and 1989, RABV isolates were obtained from white-tufted marmosets in the state of Rio Grande do Norte, but antigenic and genetic identification studies were not conducted at that time. In the following years, three additional states reported cases (Ceará, Piauí and Pernambuco). In two of these states (Ceará and Piauí), human cases of rabies transmitted by marmosets were reported. According to Brazilian Health Ministry data, at least 19 human cases in which this species was the source of infection were registered in between 1990 and 2016. Recent findings in laboratory tests of 12 rabid samples from humans and marmosets and the regional transmission among these animals for over 20 years, together with the gradual increase in the affected geographic area, support the concept of the emergence of a new RABV reservoir. Regional tourism, the wild animal trade and the cultural practice of maintaining these animals as pets, particularly in coastal regions, appear to be major risk factors for the increase in human cases. Additional epidemiological and ecological studies are required to better understand local disease dynamics and to identify ideal opportunities for prevention and control of this fatal infection.

6.
Zoonoses public health ; 65(1): 47-59, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IPPROD, Sec. Est. Saúde SP | ID: biblio-1010075

RESUMEN

Rabies virus (RABV) does not persist in the environment as it is a very fragile agent. The primary hosts are mammalian species in the orders Carnivora and Chiroptera. Since the late 1980s, RABV has been isolated from non­human primates, Callithrix jacchus (the white­tufted marmoset), in four coastal states (Rio Grande do Norte, Ceará, Piauí and Pernambuco) in north­eastern Brazil, where this species is indigenous. The original habitat of C. jacchus consisted of two Brazilian biomes, the Atlantic Forest and the Caatinga. However, these marmosets have since adapted to other ecosystems as a result of human activities. Between 1988 and 1989, RABV isolates were obtained from white­tufted marmosets in the state of Rio Grande do Norte, but antigenic and genetic identification studies were not conducted at that time. In the following years, three additional states reported cases (Ceará, Piauí and Pernambuco). In two of these states (Ceará and Piauí), human cases of rabies transmitted by marmosets were reported. According to Brazilian Health Ministry data, at least 19 human cases in which this species was the source of infection were registered in between 1990 and 2016. Recent findings in laboratory tests of 12 rabid samples from humans and marmosets and the regional transmission among these animals for over 20 years, together with the gradual increase in the affected geographic area, support the concept of the emergence of a new RABV reservoir. Regional tourism, the wild animal trade and the cultural practice of maintaining these animals as pets, particularly in coastal regions, appear to be major risk factors for the increase in human cases. Additional epidemiological and ecological studies are required to better understand local disease dynamics and to identify ideal opportunities for prevention and control of this fatal infection. (AU)


Asunto(s)
Virus de la Rabia/aislamiento & purificación , Rabia , Brasil , Zoonosis , Callitrichinae , Lyssavirus , Enfermedades Transmisibles Emergentes
7.
Arch Virol ; 162(1): 71-77, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27671776

RESUMEN

Cases of canine rabies continue to occur in North and Northeast Brazil, and the number of notifications of rabies cases in wild canids has increased as a result of the expansion of urban areas at the expense of areas with native vegetation. In light of this, we performed molecular characterization of rabies virus isolates from dogs and Cerdocyon thous from various states in North and Northeast Brazil. In all, 102 samples from dogs (n = 56) and Cerdocyon thous (n = 46) collected between 2006 and 2012 were used. The nucleotide sequences obtained for the N gene of rabies virus were analyzed, and phylogenetic analysis revealed the presence of two distinct genetic lineages, one associated with canids and one with bats, and, within the canid cluster, two distinct sublineages circulating among dogs and Cerdocyon thous. In addition, phylogenetic groups associated with geographic region and fourteen cases of interspecific infection were observed among the isolates from canids. Our findings show that analysis of rabies virus lineages isolated from reservoirs such as canids must be constantly evaluated because the mutation rate is high.


Asunto(s)
Canidae/virología , Variación Genética , Filogeografía , Virus de la Rabia/clasificación , Virus de la Rabia/genética , Rabia/veterinaria , Animales , Brasil , Análisis por Conglomerados , Perros , Genotipo , Proteínas de la Nucleocápside/genética , Virus de la Rabia/aislamiento & purificación , Análisis de Secuencia de ADN , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA