Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Drug Targets ; 8(3): 445-57, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17348837

RESUMEN

EPSP synthase (EPSPS) is an essential enzyme in the shikimate pathway, transferring the enolpyruvyl group of phosphoenolpyruvate to shikimate-3-phosphate to form 5-enolpyruvyl-3-shikimate phosphate and inorganic phosphate. This enzyme is composed of two domains, which are formed by three copies of betaalphabetaalphabetabeta-folding units; in between there are two crossover chain segments hinging the nearly topologically symmetrical domains together and allowing conformational changes necessary for substrate conversion. The reaction is ordered with shikimate-3-phosphate binding first, followed by phosphoenolpyruvate, and then by the subsequent release of phosphate and EPSP. N-[phosphomethyl]glycine (glyphosate) is the commercial inhibitor of this enzyme. Apparently, the binding of shikimate-3-phosphate is necessary for glyphosate binding, since it induces the closure of the two domains to form the active site in the interdomain cleft. However, it is somehow controversial whether binding of shikimate-3-phosphate alone is enough to induce the complete conversion to the closed state. The phosphoenolpyruvate binding site seems to be located mainly on the C-terminal domain, while the binding site of shikimate-3-phosphate is located primarily in the N-terminal domain residues. However, recent results demonstrate that the active site of the enzyme undergoes structural changes upon inhibitor binding on a scale that cannot be predicted by conventional computational methods. Studies of molecular docking based on the interaction of known EPSPS structures with (R)- phosphonate TI analogue reveal that more experimental data on the structure and dynamics of various EPSPS-ligand complexes are needed to more effectively apply structure-based drug design of this enzyme in the future.


Asunto(s)
3-Fosfoshikimato 1-Carboxiviniltransferasa/antagonistas & inhibidores , Antiinfecciosos/farmacología , Drogas en Investigación/farmacología , Modelos Químicos , 3-Fosfoshikimato 1-Carboxiviniltransferasa/metabolismo , Animales , Antiinfecciosos/síntesis química , Drogas en Investigación/síntesis química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Humanos
2.
Cell Biochem Biophys ; 44(3): 366-74, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16679523

RESUMEN

Genome sequencing efforts are providing us with complete genetic blueprints for hundreds of organisms. We are now faced with assigning, understanding, and modifying the functions of proteins encoded by these genomes. DBMODELING is a relational database of annotated comparative protein structure models and their metabolic pathway characterization, when identified. This procedure was applied to complete genomes such as Mycobacterium tuberculosis and Xylella fastidiosa. The main interest in the study of metabolic pathways is that some of these pathways are not present in humans, which makes them selective targets for drug design, decreasing the impact of drugs in humans. In the database, there are currently 1,116 proteins from two genomes. It can be accessed by any researcher at http://www.biocristalografia.df.ibilce.unesp.br/tools/. This project confirms that homology modeling is a useful tool in structural bioinformatics and that it can be very valuable in annotating genome sequence information, contributing to structural and functional genomics, and analyzing protein-ligand docking.


Asunto(s)
Bases de Datos Factuales/estadística & datos numéricos , Bases de Datos de Proteínas/estadística & datos numéricos , Mycobacterium tuberculosis/genética , Proteínas/química , Xylella/genética , Animales , Sistemas de Administración de Bases de Datos/instrumentación , Bases de Datos Genéticas/estadística & datos numéricos , Diseño de Fármacos , Genoma/genética , Genoma Bacteriano , Humanos , Imagenología Tridimensional/métodos , Almacenamiento y Recuperación de la Información/métodos , Internet/instrumentación , Modelos Moleculares , Proteínas/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Homología Estructural de Proteína
3.
J Mol Model ; 11(2): 160-6, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15759144

RESUMEN

Structural characterization of enzymes that belong to microbial metabolic pathways is very important for structure-based drug design since some of these proteins may be present in the bacterial genome, but absent in humans. Thus, metabolic pathways became potential targets for drug design. The motivation of this work is the fact that Mycobacterium tuberculosis is the cause of the deaths of millions of people in the world, so that the structural characterization of protein targets to propose new drugs has become essential. DBMODELING is a relational database, created to highlight the importance of methods of molecular modeling applied to the Mycobacterium tuberculosis genome with the aim of proposing protein-ligand docking analysis. There are currently more than 300 models for proteins from Mycobacterium tuberculosis genome in the database. The database contains a detailed description of the reaction catalyzed by each enzyme and their atomic coordinates. Information about structures, a tool for animated gif image, a table with a specification of the metabolic pathway, modeled protein, inputs used in modeling, and analysis methods used in this project are available in the database for download. The search tool can be used for researchers to find specific pathways or enzymes.


Asunto(s)
Proteínas Bacterianas/química , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Secuencia de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Bases de Datos de Proteínas , Diseño de Fármacos , Datos de Secuencia Molecular , Mycobacterium tuberculosis/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
4.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 12 Pt 2): 2310-9, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15583379

RESUMEN

Tuberculosis made a resurgence in the mid-1980s and now kills approximately 3 million people a year. The re-emergence of tuberculosis as a public health threat, the high susceptibility of HIV-infected persons and the proliferation of multi-drug-resistant strains have created a need to develop new drugs. Shikimate kinase and other enzymes in the shikimate pathway are attractive targets for development of non-toxic antimicrobial agents, herbicides and anti-parasitic drugs, because the pathway is essential in these species whereas it is absent from mammals. The crystal structure of shikimate kinase from Mycobacterium tuberculosis (MtSK) complexed with MgADP and shikimic acid (shikimate) has been determined at 2.3 A resolution, clearly revealing the amino-acid residues involved in shikimate binding. This is the first three-dimensional structure of shikimate kinase complexed with shikimate. In MtSK, the Glu61 residue that is strictly conserved in shikimate kinases forms a hydrogen bond and salt bridge with Arg58 and assists in positioning the guanidinium group of Arg58 for shikimate binding. The carboxyl group of shikimate interacts with Arg58, Gly81 and Arg136 and the hydroxyl groups interact with Asp34 and Gly80. The crystal structure of MtSK-MgADP-shikimate will provide crucial information for the elucidation of the mechanism of the shikimate kinase-catalyzed reaction and for the development of a new generation of drugs against tuberculosis.


Asunto(s)
Mycobacterium tuberculosis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Ácido Shikímico/química , Adenosina Difosfato/química , Secuencia de Aminoácidos , Arginina/química , Sitios de Unión , Catálisis , Cloruros/química , Cloro/química , Clonación Molecular , Cristalografía por Rayos X , Ácido Glutámico/química , Humanos , Enlace de Hidrógeno , Iones , Cinética , Magnesio/química , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Especificidad por Sustrato , Tuberculosis/tratamiento farmacológico
5.
Biochem Biophys Res Commun ; 325(1): 10-7, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15522194

RESUMEN

The crystal structure of shikimate kinase from Mycobacterium tuberculosis (MtSK) complexed with MgADP and shikimic acid (shikimate) has been determined at 2.3A resolution, clearly revealing the amino acid residues involved in shikimate binding. In MtSK, the Glu61 strictly conserved in SK forms a hydrogen bond and salt-bridge with Arg58 and assists in positioning the guanidinium group of Arg58 for shikimate binding. The carboxyl group of shikimate interacts with Arg58, Gly81, and Arg136, and hydroxyl groups with Asp34 and Gly80. The crystal structure of MtSK-MgADP-shikimate will provide crucial information for elucidation of the mechanism of SK-catalyzed reaction and for the development of a new generation of drugs against tuberculosis.


Asunto(s)
Proteínas Bacterianas , Mycobacterium tuberculosis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol) , Ácido Shikímico , Adenosina Difosfato/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mycobacterium tuberculosis/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Ácido Shikímico/química , Ácido Shikímico/metabolismo
6.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 11): 2003-5, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15502309

RESUMEN

The enzymes of the shikimate pathway are potential targets for the development of new therapies because they are essential for bacteria but absent from mammals. The last step in this pathway is performed by chorismate synthase (CS), which catalyzes the conversion of 5-enolpyruvylshikimate-3-phosphate to chorismate. Optimization of crystallization trials allowed the crystallization of homogeneous recombinant CS from Mycobacterium tuberculosis (MtCS). The crystals of MtCS belong to space group P6(4)22 (or P6(2)22) and diffract to 2.8 A resolution, with unit-cell parameters a = b = 129.7, c = 156.8 A. There are two molecules in the asymmetric unit. Molecular-replacement trials were not successful. Heavy-atom derivative screening is in progress.


Asunto(s)
Mycobacterium tuberculosis/enzimología , Liasas de Fósforo-Oxígeno/química , Cristalización , Cristalografía por Rayos X
7.
Biochem Biophys Res Commun ; 322(1): 100-4, 2004 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-15313179

RESUMEN

The parasite Schistosoma mansoni lacks the de novo pathway for purine biosynthesis and depends on salvage pathways for its purine requirements. Schistosomiasis is endemic in 76 countries and territories and amongst the parasitic diseases ranks second after malaria in terms of social and economic impact and public health importance. The PNP is an attractive target for drug design and it has been submitted to extensive structure-based design. The atomic coordinates of the complex of human PNP with inosine were used as template for starting the modeling of PNP from S. mansoni complexed with inosine. Here we describe the model for the complex SmPNP-inosine and correlate the structure with differences in the affinity for inosine presented by human and S. mansoni PNPs.


Asunto(s)
Inosina/química , Modelos Químicos , Modelos Moleculares , Purina-Nucleósido Fosforilasa/química , Schistosoma mansoni/enzimología , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Biología Computacional/métodos , Simulación por Computador , Activación Enzimática , Humanos , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína
8.
Biochem Biophys Res Commun ; 320(3): 979-91, 2004 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-15240145

RESUMEN

The Xylella fastidiosa is a bacterium that is the cause of citrus variegated chlorosis (CVC). The shikimate pathway is of pivotal importance for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Putative structural differences in the enzymes from the shikimate pathway, between the proteins of bacterial origin and those of plants, could be used for the development of a drug for the control of CVC. However, inhibitors for shikimate pathway enzymes should have high specificity for X. fastidiosa enzymes, since they are also present in plants. In order to pave the way for structural and functional efforts towards antimicrobial agent development, here we describe the molecular modeling of seven enzymes of the shikimate pathway of X. fastidiosa. The structural models of shikimate pathway enzymes, complexed with inhibitors, strongly indicate that the previously identified inhibitors may also inhibit the X. fastidiosa enzymes.


Asunto(s)
Modelos Moleculares , Complejos Multienzimáticos/química , Análisis de Secuencia de Proteína/métodos , Ácido Shikímico/metabolismo , Xylella/enzimología , Secuencia de Aminoácidos , Inhibidores Enzimáticos , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Transducción de Señal
9.
Biochem Biophys Res Commun ; 312(3): 608-14, 2003 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-14680808

RESUMEN

The shikimate pathway is an attractive target for herbicides and antimicrobial agent development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologues to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the EPSP synthase was proposed to be present by sequence homology. Accordingly, in order to pave the way for structural and functional efforts towards anti-mycobacterial agent development, here we describe the molecular modeling of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase isolated from M. tuberculosis that should provide a structural framework on which the design of specific inhibitors may be based on. Significant differences in the relative orientation of the domains in the two models result in "open" and "closed" conformations. The possible relevance of this structural transition in the ligand biding is discussed.


Asunto(s)
Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Glicina/análogos & derivados , Glicina/química , Modelos Moleculares , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/enzimología , Análisis de Secuencia de Proteína , Ácido Shikímico/análogos & derivados , Ácido Shikímico/química , 3-Fosfoshikimato 1-Carboxiviniltransferasa , Transferasas Alquil y Aril/genética , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Secuencia Conservada , Escherichia coli/química , Escherichia coli/enzimología , Escherichia coli/genética , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Mycobacterium tuberculosis/genética , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Alineación de Secuencia , Relación Estructura-Actividad , Glifosato
10.
Biochem Biophys Res Commun ; 312(3): 767-72, 2003 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-14680831

RESUMEN

Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. PNP is a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. More recently, the 3-D structure of human PNP has been refined to 2.3A resolution, which allowed a redefinition of the residues involved in the substrate-binding sites and provided a more reliable model for structure-based design of inhibitors. This work reports crystallographic study of the complex of Human PNP:guanine (HsPNP:Gua) solved at 2.7A resolution using synchrotron radiation. Analysis of the structural differences among the HsPNP:Gua complex, PNP apoenzyme, and HsPNP:immucillin-H provides explanation for inhibitor binding, refines the purine-binding site, and can be used for future inhibitor design.


Asunto(s)
Cristalización/métodos , Cristalografía/métodos , Guanina/química , Modelos Moleculares , Purina-Nucleósido Fosforilasa/química , Agua/química , Sitios de Unión , Simulación por Computador , Activación Enzimática , Humanos , Sustancias Macromoleculares , Fosfatos/química , Unión Proteica , Conformación Proteica , Soluciones , Especificidad por Sustrato , Teprotido
11.
Biochem Biophys Res Commun ; 309(4): 917-22, 2003 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-13679061

RESUMEN

Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. PNP is a target for inhibitor development aiming at T-cell immune response modulation. This work reports on the crystallographic study of the complex of human PNP-immucillin-H (HsPNP-ImmH) solved at 2.6A resolution using synchrotron radiation. Immucillin-H (ImmH) inhibits the growth of malignant T-cell lines in the presence of deoxyguanosine without affecting non-T-cell tumor lines. ImmH inhibits activated normal human T cells after antigenic stimulation in vitro. These biological effects of ImmH suggest that this agent may have utility in the treatment of certain human diseases characterized by abnormal T-cell growth or activation. This is the first structural report of human PNP complexed with immucillin-H. The comparison of the complex HsPNP-ImmH with recent crystallographic structures of human PNP explains the high specificity of immucillin-H for human PNP.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Purina-Nucleósido Fosforilasa/antagonistas & inhibidores , Pirimidinonas/farmacología , Pirroles/farmacología , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica , Nucleósidos de Purina , Purina-Nucleósido Fosforilasa/química
12.
Biochem Biophys Res Commun ; 308(3): 553-9, 2003 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-12914786

RESUMEN

In human, purine nucleoside phosphorylase (HsPNP) is responsible for degradation of deoxyguanosine and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. This work reports the first crystallographic study of human PNP complexed with acyclovir (HsPNP:Acy). Acyclovir is a potent clinically useful inhibitor of replicant herpes simplex virus that also inhibits human PNP but with a relatively lower inhibitory activity (K(i)=90 microM). Analysis of the structural differences among the HsPNP:Acy complex, PNP apoenzyme, and HsPNP:Immucillin-H provides explanation for inhibitor binding, refines the purine-binding site, and can be used for future inhibitor design.


Asunto(s)
Aciclovir/química , Inhibidores Enzimáticos/química , Modelos Moleculares , Purina-Nucleósido Fosforilasa/química , Aciclovir/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/metabolismo , Enlace de Hidrógeno , Ligandos , Sustancias Macromoleculares , Fosfatos/química , Conformación Proteica , Purina-Nucleósido Fosforilasa/metabolismo
13.
Biochem Biophys Res Commun ; 295(1): 142-8, 2002 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-12083781

RESUMEN

Tuberculosis (TB) resurged in the late 1980s and now kills approximately 3 million people a year. The reemergence of tuberculosis as a public health threat has created a need to develop new anti-mycobacterial agents. The shikimate pathway is an attractive target for herbicides and anti-microbial agents development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologs to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the shikimate kinase I encoding gene (aroK) was proposed to be present by sequence homology. Accordingly, to pave the way for structural and functional efforts towards anti-mycobacterial agents development, here we describe the molecular modeling of M. tuberculosis shikimate kinase that should provide a structural framework on which the design of specific inhibitors may be based.


Asunto(s)
Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dickeya chrysanthemi/enzimología , Enlace de Hidrógeno , Magnesio/metabolismo , Datos de Secuencia Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Estructura Secundaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA