Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep Methods ; 2(9): 100297, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36160045

RESUMEN

Organoids are carrying the promise of modeling complex disease phenotypes and serving as a powerful basis for unbiased drug screens, potentially offering a more efficient drug-discovery route. However, unsolved technical bottlenecks of reproducibility and scalability have prevented the use of current organoids for high-throughput screening. Here, we present a method that overcomes these limitations by using deep-learning-driven analysis for phenotypic drug screens based on highly standardized micropattern-based neural organoids. This allows us to distinguish between disease and wild-type phenotypes in complex tissues with extremely high accuracy as well as quantify two predictors of drug success: efficacy and adverse effects. We applied our approach to Huntington's disease (HD) and discovered that bromodomain inhibitors revert complex phenotypes induced by the HD mutation. This work demonstrates the power of combining machine learning with phenotypic drug screening and its successful application to reveal a potentially new druggable target for HD.


Asunto(s)
Aprendizaje Profundo , Enfermedad de Huntington , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Ensayos Analíticos de Alto Rendimiento , Evaluación Preclínica de Medicamentos , Reproducibilidad de los Resultados , Organoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA