RESUMEN
The cooking process is fundamental for bean consumption and to increase the bioavailability of its nutritional components. The study aimed to determine the effect of cooking on bean seed coat through morphological analyses with different microscopy techniques and image analyses. The chemical composition and physical properties of raw black bean (RBB) and cooked black bean (CBB) seeds were determined. The surface and cross-sectional samples were studied by Optical microscopy (OM), environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). The composition of samples showed significant differences after the cooking process. OM images and gray level co-occurrence matrix algorithm (GLCM) analysis indicated that cuticle-deposited minerals significantly influence texture parameters. Seed coat surface ESEM images showed cluster cracking. Texture fractal dimension and lacunarity parameters were effective in quantitatively assessing cracks on CBB. AFM results showed arithmetic average roughness (Ra) (121.67 nm) and quadratic average roughness (Rq) (149.94 nm). The cross-sectional ESEM images showed a decrease in seed coat thickness. The CLSM results showed an increased availability of lipids along the different multilayer tissues in CBB. The results generated from this research work offer a valuable potential to carry out a strict control of bean seed cooking at industrial level, since the structural changes and biochemical components (cell wall, lipids and protein bodies) that occur in the different tissues of the seed are able to migrate from the inside to the outside through the cracks generated in the multilayer structure that are evidenced by the microscopic techniques used.
RESUMEN
Green tomato (Physalis ixocarpa) is a specie native to Mexico, and it is known as "tomatillo" or "husk tomato". The fruit contains vitamins, minerals, phenolic compounds, and steroidal lactones, presenting antimicrobial activity and antinarcotic effects. Therefore, it is not only used in traditional Mexican cuisine, but also in traditional medicine to relieve some discomforts such as fever, cough, and amygdalitis. However, it is a perishable fruit whose shelf life is very short. As a part of the peel, cuticle, and epicuticular waxes represent the most important part in plant protection, and the specific composition and structural characterization are significant to know how this protective biopolymer keeps quality characteristics in fresh fruits. P. ixocarpa cutin was obtained by enzymatic treatments (cellulase, hemicellulose, and pectinase) and different concentrations of TFA, and studied through Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CPMAS 13C NMR), Ultra-High Performance Liquid Chromatography coupled to Mass Spectrometry (UHPLC-MS), and was morphologically characterized by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM). The main constituents identified under the basis of UHPLC-MS analysis were 9,10,18-trihydroxy-octadecanoic acid and 9,10-epoxy-18-hydroxy-octadecanoic acid with 44.7 and 37.5%, respectively. The C16 absence and low occurrence of phenolic compounds, besides the presence of glandular trichomes, which do not allow a continuous layer on the surface of the fruit, could be related to a lower shelf life compared with other common fruits such as tomato (Solanum lycopersicum).
Asunto(s)
Lípidos de la Membrana , Physalis , Solanum lycopersicum , Frutas , México , FenolesRESUMEN
The objective of this study was to assess the effectiveness of liposomes loaded with soybean lunasin and amaranth unsaponifiable matter (UM + LunLip) as a source of squalene in the prevention of melanoma skin cancer in an allograft mice model. Tumors were induced by transplanting melanoma B16-F10 cells into the mice. The most effective treatments were those including UM + LunLip, with no difference between the lunasin concentrations (15 or 30 mg/kg body weight); however, these treatments were statistically different from the tumor-bearing untreated control (G3) (p < 0.05). The groups treated with topical application showed significant inhibition (68%, p < 0.05) compared to G3. The groups treated with subcutaneous injections showed significant inhibition (up to 99%, p < 0.05) in G3. During tumor development, UM + LunLip treatments under-expressed Ki-67 (0.2-fold compared to G3), glycogen synthase kinase-3ß (0.1-fold compared to G3), and overexpressed caspase-3 (30-fold compared to G3). In addition, larger tumors showed larger necrotic areas (38% with respect to the total tumor) (p < 0.0001). In conclusion, the UM + LunLip treatment was effective when applied either subcutaneously or topically in the melanoma tumor-developing groups, as it slowed down cell proliferation and activated apoptosis.
RESUMEN
Inflammation is a normal response in defense to agents that may cause damage to the human body. When inflammation becomes chronic, reactive oxygen species (ROS) are produced; which could lead to diseases such as cancer. The aim was to assess liposomes' antioxidant and anti-inflammatory capacity loaded with amaranth unsaponifiable matter and soybean lunasin (UM + LunLip) in an in vitro model using fibroblasts and macrophages. To evaluate ROS production, fibroblasts CHON-002 ABAP were added to promote ROS production; and the cells were treated with UM + LunLip. For inflammation markers production, lipopolysaccharides (LPS)-stimulated RAW 264.7 and peritoneal macrophages were treated with empty liposomes (EmLip), liposomes loaded with unsaponifiable matter (UMLip), liposomes loaded with lunasin (LunLip), and UM + LunLip. ROS production was significantly decreased by 77% (p < 0.05) when fibroblasts were treated with UM + LunLip at 2 mg lunasin/mL compared with the control treated with ABAP. Treatment with UMLip was the most effective in reducing tumor necrosis factor-α (71-90%) and interleukin-6 (43-55%, p < 0.001). Both liposomes containing unsaponifiable matter (UMLip and UM + LunLip) were more effective than EmLip or LunLip. In conclusion, amaranth unsaponifiable matter-loaded liposomes are effective in decreasing pro-inflammatory cytokine production.
Asunto(s)
Glycine max , Lipopolisacáridos , Amidinas , Antiinflamatorios , Antioxidantes/farmacología , Fibroblastos , Humanos , Inflamación , Interleucina-6 , Liposomas , Macrófagos , Especies Reactivas de Oxígeno , Factor de Necrosis Tumoral alfaRESUMEN
The cuajilote (Parmentiera edulis D.C.) tree produces fibrous fruits with a high content of lignocellulosic compounds. However, this fruit and their fibers have been scarcely studied. For this reason, an integral study of their cellular architecture, physicochemical, micromechanical, and structural properties in two maturity stages were carried out. Physicochemical tests, light, confocal and electron microscopy, microindentation, and X-ray diffraction were used for the characterization of fruit and their fibers. Chemical analysis showed that the unripe fruits have the highest cellulose content (42.17%), but in ripe fruit the cellulose content decreases (32.76%) while lignin content increases from 35.26 to 40.79%, caused by the lignification of the sclerenchyma fibers. Microstructural and micromechanical studies in the different regions of the fruit provided relevant information about its cellular architecture, distribution of lignocellulosic compounds and its role in the micromechanical properties of their fibers. The thickening cell wall of sclerenchyma fibers was caused by the cellular lignification of the ripe fruits. According to the physicochemical and structural studies, cuajilote fibers are comparable to other fibers obtained from crops rich in lignocellulosic compounds. The current study provided new knowledge about the cellular architecture of fruit and criteria for selecting the ripening stage adequate for the extraction of cellulose or lignin. Furthermore, information regarding the micromechanical properties of their fibers and which structural arrangement could be more convenient for mechanical reinforcement of biodegradable materials was obtained.
Asunto(s)
Frutas , Microscopía , Pared Celular , Celulosa , LigninaRESUMEN
The cuticle, a protective cuticular barrier present in almost all primary aerial plant organs, has a composition that varies between plant species. As a part of the apple peel, cuticle and epicuticular waxes have an important role in the skin appearance and quality characteristic in fresh fruits destined for human consumption. The specific composition and structural characteristics of cutin from two apple varieties, "golden delicious" and "red delicious", were obtained by enzymatic protocols and studied by means of cross polarization magic angle spinning nuclear magnetic resonance (CP-MAS 13C NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and mass spectrometry, and were morphologically characterized by specialized microscopy techniques (atomic force microscopy (AFM), confocal laser scanning microscopy (CLMS), and scanning electron microscopy (SEM)). According to CP-MAS 13C NMR and ATR-FTIR analysis, cutins from both varieties are mainly composed of aliphatics and a small difference is shown between them. This was corroborated from the hydrolyzed cutins analysis by mass spectrometry, where 9,10,18-trihydroxy-octadecanoic acid; 10,20-Dihydroxy-icosanoic acid; 10,16-dihydroxy hexadecenoic acid (10,16-DHPA); 9,10-epoxy-12-octadecenoic acid; and 9,10-epoxy-18-hydroxy-12-octadecenoic acid were the main monomers isolated. The low presence of polysaccharides and phenolics in the cutins obtained could be related to the low elastic behavior of this biocomposite and the presence of cracks in the apple cutin's surface. These cracks have an average depth of 1.57 µm ± 0.57 in the golden apple, and 1.77 µm ± 0.64 in those found in the red apple. The results obtained in this work may facilitate a better understanding that mechanical properties of the apple fruit skin are mainly related to the specific aliphatic composition of cutin and help to much better investigate the formation of microcracks, an important symptom of russet formation.
Asunto(s)
Malus/metabolismo , Lípidos de la Membrana/análisis , Frutas/metabolismo , Hidrólisis , Hidróxidos/química , Ácido Linoleico/análisis , Ácido Linoleico/química , Lípidos de la Membrana/química , Microscopía de Fuerza Atómica , Microscopía Confocal , Ácido Palmítico/análisis , Ácido Palmítico/química , Compuestos de Potasio/química , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Vanilla is one of the most popular species in the world. Its main compound, vanillin, is responsible for its characteristic aroma and flavor and its antioxidant and biological properties. Vanillin is very unstable in the presence of oxygen, light, and humidity, which complicates its use and preservation. Therefore, to solve this problem, this study aimed to develop vanilla oleoresin microcapsules. Vanilla oleoresin was obtained with supercritical carbon dioxide and microencapsulated by complex coacervation and subsequent spray drying (100 °C/60 °C inlet/outlet temperature). The optimal conditions for the complex coacervation process were 0.34% chitosan, 1.7% gum Arabic, 5.29 pH, and an oleoresin:wall material ratio of 1:2.5. Fourier Transform Infrared Spectroscopy (FT-IR) analysis of the coacervates before and after spray drying revealed the presence of the functional group C=N (associated with carbonyl groups of vanillin and amino groups of chitosan), indicating that microencapsulation by complex coacervation-spray drying was successful. The retention and encapsulation efficiencies were 84.89 ± 1.94% and 69.20 ± 1.79%. The microcapsules obtained from vanilla oleoresin had high vanillin concentration and the presence of other volatile compounds and essential fatty acids. All this improves the aroma and flavor of the product, increasing its consumption and application in various food matrices.
RESUMEN
A full factorial design (ascorbic acid/l-cysteine inhibitors, temperature, and time as factors) study was conducted to enhance inhibition of polyphenol oxidase (PPO) activity without decreasing cocoa polyphenol concentrations. The data obtained were modelled through a new equation, represented by Γ, which correlates both high polyphenol content with reduced specific PPO activity. At optimized values (70 mM inhibitory solution at 96 °C for 6.4 min, Γ = 11.6), 93.3% PPO inhibition and total polyphenol of 94.9 mg GAE/g were obtained. In addition, microscopy images confirmed the cell morphological changes measured as the fractal dimension and explained the possible cell lysis and denaturation as a result of heat treatment and chemical inhibitors. Results also showed that PPO enzyme was most suitable (higher vmax/Km ratio) for catechol, with a reduction in its affinity of 13.7-fold after the inhibition heat treatment. Overall, this work proposed a suitable and food-safe procedure for obtaining enriched polyphenol extract with low enzyme activity.
RESUMEN
Oriented immobilization of antibodies on a sensor surface is critical for enhancing both the antigen-binding capacity and the sensitivity of immunosensors. In this study, we describe a strategy to adsorb immunoglobulin G (IgG) anti-Brucella antibodies onto a silicon surface, oriented by protein A obtained from Staphylococcus aureus (SpA). X-ray photoelectron spectroscopy and atomic force microscopy were used to characterize topographically, morphologically, and chemical changes of the sensor functionalization. The activity of the biosensor was assessed by confocal microscopy, scanning electronic microscopy, and bacteria capture assays (BCA). According to the BCA, the efficiency of Brucella abortus detection with the SpA-IgG anti Brucella biosensor was three-fold higher than that of the random orientated IgG anti Brucella biosensor. The limit of detection was 1 × 106 CFU/ml. These data show that the orientation of antibodies immobilization is crucial to developing immunosensors for bacterial antigen detection as Brucella spp and improve its sensibility level. Functionalization with protein A increases Brucella detection by an antibody-coated surface. Functionalized silicon surface for Brucella detection was characterized by atomic force microscopy, X-ray photoelectron spectroscopy and confocal microscopy.
Asunto(s)
Anticuerpos Inmovilizados/inmunología , Técnicas Biosensibles/métodos , Brucella abortus/aislamiento & purificación , Inmunoensayo/métodos , Anticuerpos Antibacterianos/inmunología , Brucella abortus/inmunología , Inmunoglobulina G/inmunología , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: The search for natural, novel, high-quality, stable food ingredients is an ongoing practice in the food industry. Pulp of borojo (Borojoa patinoi Cuatrecasas), which is a fruit of the Colombian Pacific region, can be separated into three phases: liquid (LP), medium (MP) and solid (SP) phases. The objective of this work was to evaluate the effect of the three-phase composition and gum arabic on their glass transitions temperatures (T(g)). The best mixture, LP-MP, MP-SP and LP-SP and gum arabic (GA) was identified by response surface methodology. RESULTS: When adding GA to SP borojo phase in a 1:1 proportion, the resulting T(g) of the mixture was 132.27 °C whereas Tg for GA and SP-phase were 154.89 °C and 79.86 °C respectively, which supported this combination as attractive from a processing perspective and supports an industrial advantage of using borojo as food ingredient. Phases were characterized by high-performance liquid chromatography, Fourier transform infrared spectroscopy, confocal laser scanning microscopy and mass spectrometry. Low molecular weight compounds such as fructose for MP lowered T(g) whereas the presence of lignin increased T(g) of the mixtures as with the SP. CONCLUSIONS: The addition of GA significantly increased T(g) of borojo phases so leading to propose them as novel food processing materials.