Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Intervalo de año de publicación
1.
Microorganisms ; 12(2)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38399768

RESUMEN

Hepatitis E virus (HEV) infection is a common cause of acute viral hepatitis in tropical regions. In Brazil, HEV G3 is the only genotype detected to date. Reports on HEV prevalence are heterogeneous. We aimed to compare the prevalence of anti-HEV among three populations living in the Brazilian Amazon basin. Two cross-sectional studies were conducted in urban, rural, and Yanomami indigenous areas. Plasma samples from 428 indigenous and 383 non-indigenous subjects were tested for anti-HEV IgG using enzyme-linked immunosorbent assays. The overall prevalence of anti-HEV was 6.8% (95%CI: 5.25-8.72), with 2.8% (12/428) found in the Yanomami areas, 3% (3/101) in an urban area, and 14.2% (40/282) in a rural area. Multivariate logistic analysis indicated that patients aged 31-45 years or ≥46 years are more likely to present anti-HEV positivity, with a respective aOR of 2.76 (95%CI: 1.09-7.5) and 4.27 (95%CI: 1.58-12.35). Furthermore, residence in a rural area (aOR: 7.67; 95%CI: 2.50-33.67) represents a relevant risk factor for HEV infection. Additional studies detecting HEV RNA in fecal samples from both humans and potential animal reservoirs are necessary to comprehensively identify risk factors associated with HEV exposure.

2.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511330

RESUMEN

The PvCelTOS, PvCyRPA, and Pvs25 proteins play important roles during the three stages of the P. vivax lifecycle. In this study, we designed and expressed a P. vivax recombinant modular chimeric protein (PvRMC-1) composed of the main antigenic regions of these vaccine candidates. After structure modelling by prediction, the chimeric protein was expressed, and the antigenicity was assessed by IgM and IgG (total and subclass) ELISA in 301 naturally exposed individuals from the Brazilian Amazon. The recombinant protein was recognized by IgG (54%) and IgM (40%) antibodies in the studied individuals, confirming the natural immunogenicity of the epitopes that composed PvRMC-1 as its maintenance in the chimeric structure. Among responders, a predominant cytophilic response mediated by IgG1 (70%) and IgG3 (69%) was observed. IgM levels were inversely correlated with age and time of residence in endemic areas (p < 0.01). By contrast, the IgG and IgM reactivity indexes were positively correlated with each other, and both were inversely correlated with the time of the last malaria episode. Conclusions: The study demonstrates that PvRMC-1 was successfully expressed and targeted by natural antibodies, providing important insights into the construction of a multistage chimeric recombinant protein and the use of naturally acquired antibodies to validate the construction.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Humanos , Plasmodium vivax/genética , Inmunidad Humoral , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes de Fusión/genética , Inmunoglobulina G , Inmunoglobulina M/genética , Antígenos de Protozoos/genética
3.
Mem Inst Oswaldo Cruz ; 118: e220203, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37018796

RESUMEN

BACKGROUND: Recurrence is a hallmark of ocular toxoplasmosis (OT), and conditions that influence its occurrence remain a challenge. Natural killer cells (NK) are effectors cells whose primary is cytotoxic function against many parasites, including Toxoplasma gondii. Among the NK cell receptors, immunoglobulin-like receptors (KIR) deserve attention due to their high polymorphism. OBJECTIVES: This study aimed to analyse the influence of KIR gene polymorphism in the course of OT infection and its association with recurrences after an active episode. METHODS: Ninety-six patients from the Ophthalmologic Clinic of the National Institute of Infectology Evandro Chagas were followed for up to five years. After DNA extraction, genotyping of the patients was performed by polymerase chain reaction sequence-specific oligonucleotide (PCR-SSO) utilising Luminex equipment for reading. During follow-up, 60.4% had a recurrence. FINDINGS: We identified 25 KIR genotypes and found a higher frequency of genotype 1 (31.7%) with worldwide distribution. We note that the KIR2DL2 inhibitor gene and the gene activator KIR2DS2 were more frequent in patients without recurrence. Additionally, we observed that individuals who carry these genes progressed recurrence episodes slowly compared to individuals who do not carry these genes. MAIN CONCLUSIONS: The KIR2DL2 and KIR2DS2 are associated as possible protection markers against ocular toxoplasmosis recurrence (OTR).


Asunto(s)
Toxoplasmosis Ocular , Humanos , Brasil , Receptores KIR/genética , Genotipo , Inmunoglobulinas/genética , Frecuencia de los Genes
5.
Genes (Basel) ; 12(11)2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34828264

RESUMEN

The Plasmodium vivax Cysteine-Rich Protective Antigen (PvCyRPA) has an important role in erythrocyte invasion and has been considered a target for vivax malaria vaccine development. Nonetheless, its genetic diversity remains uncharted in Brazilian malaria-endemic areas. Therefore, we investigated the pvcyrpa genetic polymorphism in 98 field isolates from the Brazilian Amazon and its impact on the antigenicity of predicted B-cell epitopes. Genetic diversity parameters, population genetic analysis, neutrality test and the median-joining network were analyzed, and the potential amino acid polymorphism participation in B-cell epitopes was investigated. One synonymous and 26 non-synonymous substitutions defined fifty haplotypes. The nucleotide diversity and Tajima's D values varied across the coding gene. The exon-1 sequence had greater diversity than those of exon-2. Concerning the prediction analysis, seven sequences were predicted as linear B cell epitopes, the majority contained in conformational epitopes. Moreover, important amino acid polymorphism was detected in regions predicted to contain residues participating in B-cell epitopes. Our data suggest that the pvcyrpa gene presents a moderate polymorphism in the studied isolates and such polymorphisms alter amino acid sequences contained in potential B cell epitopes, an important observation considering the antigen potentiality as a vaccine candidate to cover distinct P. vivax endemic areas worldwide.


Asunto(s)
Antígenos de Protozoos/genética , Plasmodium vivax/genética , Adulto , Anciano , Anciano de 80 o más Años , Brasil/epidemiología , Cisteína/química , Cisteína/genética , Femenino , Variación Genética , Genética de Población , Geografía , Humanos , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Malaria Vivax/prevención & control , Masculino , Persona de Mediana Edad , Plasmodium vivax/inmunología , Plasmodium vivax/aislamiento & purificación , Polimorfismo Genético , Proteínas Protozoarias/genética , Análisis de Secuencia de ADN , Desarrollo de Vacunas , Adulto Joven
6.
Front Pharmacol ; 12: 542342, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366834

RESUMEN

Genetic variability was linked with individual responses to treatment and susceptibility to malaria by Plasmodium vivax. Polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatment. The aim of the study was to investigate whether or not CYP2D6 single nucleotide polymorphisms rs1065852, rs38920-97, rs16947 and rs28371725 are unequally distributed in malaria by Plasmodium vivax individuals from the Brazilian Amazon region. The blood samples were collected from 220 unrelated Plasmodium vivax patients from five different endemic areas. Genotyping was performed using SNaPshot® and real-time polymerase chain reaction methods. In all five areas, the rs1065852 (CYP2D6*10, C.100C > T), rs3892097 (CYP2D6*4, 1846C > T) and rs16947 (CYP2D6*2, C.2850G > A), as a homozygous genotype, showed the lowest frequencies. The rs28371725 (CYP2D6*41, 2988G > A) homozygous genotype was not detected, while the allele A was found in a single patient from Macapá region. No deviations from Hardy-Weinberg equilibrium were found, although a borderline p-value was observed (p = 0.048) for the SNP rs3892097 in Goianésia do Pará, Pará state. No significant associations were detected in these frequencies among the five studied areas. For the SNP rs3892097, a higher frequency was observed for the C/T heterozygous genotype in the Plácido de Castro and Macapá, Acre and Amapá states, respectively. The distribution of the CYP2D6 alleles investigated in the different areas of the Brazilian Amazon is not homogeneous. Further investigations are necessary in order to determine which alleles might be informative to assure optimal drug dosing recommendations based on experimental pharmacogenetics.

7.
PLoS One ; 15(11): e0241426, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33166298

RESUMEN

Circumsporozoite protein (CSP) is the primary pre-erythrocytic vaccine target in Plasmodium species. Knowledge about their genetic diversity can help predict vaccine efficacy and the spread of novel parasite variants. Thus, we investigated pvcsp gene polymorphisms in 219 isolates (136 from Brazilian Amazon [BA], 71 from Rio de Janeiro Atlantic Forest [AF], and 12 from non-Brazilian countries [NB]). Forty-eight polymorphic sites were detected, 46 in the central repeat region (CR), and two in the C-terminal region. Also, the CR presents InDels and a variable number of repeats. All samples correspond to the VK210 variant, and 24 VK210 subtypes based on CR. Nucleotide diversity (π = 0.0135) generated a significant number of haplotypes (168) with low genetic differentiation between the Brazilian regions (Fst = 0.208). The haplotype network revealed similar distances among the BA and AF regions. The linkage disequilibrium indicates that recombination does not seem to be acting in diversity, reinforcing natural selection's role in accelerating adaptive evolution. The high diversity (low Fst) and polymorphism frequencies could be indicators of balancing selection. Although malaria in BA and AF have distinct vector species and different host immune pressures, consistent genetic signature was found in two regions. The immunodominant B-cell epitope mapped in the CR varies from seven to 19 repeats. The CR T-cell epitope is conserved only in 39 samples. Concerning to C-terminal region, the Th2R epitope presented nonsynonymous SNP only in 6% of Brazilian samples, and the Th3R epitope remained conserved in all studied regions. We conclude that, although the uneven distribution of alleles may jeopardize the deployment of vaccines directed to a specific variable locus, a unique vaccine formulation could protect populations in all Brazilian regions.


Asunto(s)
Variación Genética , Parásitos/genética , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Selección Genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Océano Atlántico , Brasil , Codón/genética , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Geografía , Haplotipos/genética , Mutación INDEL/genética , Desequilibrio de Ligamiento/genética , Nucleótidos/genética , Péptidos/química , Filogenia , Plasmodium vivax/aislamiento & purificación , Polimorfismo Genético , Proteínas Protozoarias/química
8.
Infect Genet Evol ; 86: 104592, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33059085

RESUMEN

Plasmodium vivax merozoite surface proteins (PvMSP) 1 and 7 are considered vaccine targets. Genetic diversity knowledge is crucial to assess their potential as immunogens and to provide insights about population structure in different epidemiological contexts. Here, we investigate the variability of pvmsp-142, pvmsp-7E, and pvmsp-7F genes in 227 samples from the Brazilian Amazon (BA) and Rio de Janeiro Atlantic Forest (AF). pvmsp-142 has 63 polymorphisms - 57 nonsynonymous - generating a nucleotide diversity of π = 0.009 in AF, and π = 0.018 in BA. In pvmsp-7E, 134 polymorphisms - 103 nonsynonymous - generate the nucleotide diversity of π = 0.027 in AF, and π = 0.042 in BA. The pvmsp-7F has only two SNPs - A610G and A1054T -, with nucleotide diversity of π = 0.0004 in AF, and π = 0.0007 in BA. The haplotype diversity of pvmsp-142, pvmsp-7E, and pvmsp-7F genes is 0.997, 1.00, and 0.649, respectively. None of the pvmsp-142 or pvmsp-7E sequences are identical to the Salvador 1 strain's sequence. Conversely, most of pvmsp-7F sequences (94/48%) are identical to Sal-1. We evaluated eight B-cell epitopes in pvmsp-7E, four of them showed higher nucleotide diversity compared to pvmsp-7E's epitopes. Positive selection was detected in pvmsp-142, pvmsp-7E central region, and pvmsp-7F with Tajima's D. In pvmsp-7E, the significant nucleotide and haplotype diversities with low genetic differentiation, could be indicative of balancing selection. The genetic differentiation of pvmsp-142 (0.315) and pvmsp-7F (0.354) genes between AF and BA regions is significant, which is not the case for pvmsp-7E (0.193). We conclude that pvmsp-142 and pvmsp-7E have great genetic diversity even in AF region, an enclosure area with deficient transmission levels of P. vivax zoonotic malaria. In both Brazilian regions, pvmsp-119, pvmsp-7E, and pvmsp-7F are conserved, most likely due to their roles in parasite survival, and could be considered potential targets for a "blood-stage vaccine".


Asunto(s)
Variación Genética , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Proteínas de la Membrana/genética , Proteína 1 de Superficie de Merozoito/genética , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Brasil/epidemiología , Interacciones Huésped-Parásitos , Humanos , Malaria Vivax/transmisión , Vigilancia en Salud Pública
9.
Malar J ; 19(1): 81, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075659

RESUMEN

BACKGROUND: Plasmodium vivax is the most widespread human malaria parasite outside Africa and is the predominant parasite in the Americas. Increasing reports of P. vivax disease severity, together with the emergence of drug-resistant strains, underscore the urgency of the development of vaccines against P. vivax. Polymorphisms on DBP-II-gene could act as an immune evasion mechanism and, consequently, limited the vaccine efficacy. This study aimed to investigate the pvdbp-II genetic diversity in two Brazilian regions with different epidemiological patterns: the unstable transmission area in the Atlantic Forest (AF) of Rio de Janeiro and; the fixed malaria-endemic area in Brazilian Amazon (BA). METHODS: 216 Brazilian P. vivax infected blood samples, diagnosed by microscopic examination and PCR, were investigated. The region flanking pvdbp-II was amplified by PCR and sequenced. Genetic polymorphisms of pvdbp-II were estimated based on the number of segregating sites and nucleotide and haplotype diversities; the degree of differentiation between-regions was evaluated applying Wright's statistics. Natural selection was calculated using the rate of nonsynonymous per synonymous substitutions with the Z-test, and the evolutionary distance was estimated based on the reconstructed tree. RESULTS: 79 samples from AF and 137 from BA were successfully sequenced. The analyses showed 28 polymorphic sites distributed in 21 codons, with only 5% of the samples Salvador 1 type. The highest rates of polymorphic sites were found in B- and T cell epitopes. Unexpectedly, the nucleotide diversity in pvdbp-II was higher in AF (0.01) than in BA (0.008). Among the 28 SNPs detected, 18 are shared between P. vivax isolates from AF and BA regions, but 8 SNPs were exclusively detected in AF-I322S, K371N, E385Q, E385T, K386T, K411N, I419L and I419R-and 2 (N375D and I419M) arose exclusively in BA. These findings could suggest the potential of these geographical clusters as population-specific-signatures that may be useful to track the origin of infections. The sample size should be increased in order to confirm this possibility. CONCLUSIONS: The results highlight that the pvdbp-II polymorphisms are positively selected by host's immune pressure. The characterization of pvdbp-II polymorphisms might be useful for designing effective DBP-II-based vaccines.


Asunto(s)
Variación Genética , Malaria Vivax/transmisión , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Brasil , Selección Genética
10.
Mem Inst Oswaldo Cruz ; 114: e190054, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31411308

RESUMEN

BACKGROUND: The central repetitive region (CRR) of the Plasmodium vivax circumsporozoite surface protein (CSP) is composed of a repetitive sequence that is characterised by three variants: VK210, VK247 and P. vivax-like. The most important challenge in the treatment of P. vivax infection is the possibility of differential response based on the parasite genotype. OBJECTIVES: To characterise the CSP variants in P. vivax isolates from individuals residing in a malaria-endemic region in Brazil and to profile these variants based on sensitivity to chloroquine and mefloquine. METHODS: The CSP variants were determined by sequencing and the sensitivity of the P. vivax isolates to chloroquine and mefloquine was determined by Deli-test. FINDINGS: Although five different allele sizes were amplified, the sequencing results showed that all of the isolates belonged to the VK210 variant. However, we observed substantial genetic diversity in the CRR, resulting in the identification of 10 different VK210 subtypes. The frequency of isolates that were resistant to chloroquine and mefloquine was 11.8 and 23.8%, respectively. However, we did not observe any difference in the frequency of the resistant isolates belonging to the VK210 subtypes. MAIN CONCLUSION: The VK210 variant is the most frequently observed in the studied region and there is significant genetic variability in the CRR of the P. vivax CSP. Moreover, the antimalarial drug sensitivity profiles of the isolates does not seem to be related to the VK210 subtypes.


Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Malaria Vivax/parasitología , Mefloquina/farmacología , Plasmodium vivax/efectos de los fármacos , Proteínas Protozoarias/genética , Genotipo , Humanos , Pruebas de Sensibilidad Parasitaria , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Reacción en Cadena de la Polimerasa
11.
Infect Genet Evol ; 73: 287-294, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31077839

RESUMEN

The Plasmodium vivax Ookinete Surface Protein (Pvs25) is one of the leading malaria Transmission-Blocking Vaccine candidates based on its high immunogenicity in animal models, transmission-blocking activity of antibodies elicited in clinical trials and high conservation among P. vivax isolates from endemic areas. However, the polymorphism in gene encoding Pvs25 in endemic areas from South America has been poorly studied so far. Here, we investigated the genetic polymorphism of pvs25 in P. vivax isolates from five different regions of the Brazilian Amazon (Cruzeiro do Sul, Mâncio Lima, Guajará, Manaus and Oiapoque) and its impact on antigenicity of predicted B-cell epitopes using gene sequencing and epitope prediction tools. Firstly, only a non-synonymous substitution was found in the 657 bp amplified fragment in all sequenced samples, which represented an exchange of Gln by Lys at position 87 (Q87K) of protein amino acid sequence (domain II EGF-like). Q87K substitution was also present in all studied sites with a total frequency of 37.8%. Cruzeiro do Sul presented Q87K substitution in almost half of the isolates (48.4%), and an expressive frequency (40.5%) was also found in Manaus, while in Mâncio Lima, Guajará and Oiapoque, the frequencies were low (23.5%, 25% and 22.2% respectively). We also observed the Q87K mutation in a predicted B-cell epitope of pvs25, with no significant changes on its putative antigenicity. Our data suggest that the pvs25 gene is conserved among isolates from different Brazilian Amazon geographic regions, an important observation considering the antigen potentiality as a vaccine candidate to cover distinct P. vivax endemic areas worldwide.


Asunto(s)
Antígenos de Protozoos/genética , Antígenos de Superficie/genética , Secuencia Conservada/genética , Vacunas contra la Malaria/genética , Plasmodium vivax/crecimiento & desarrollo , Secuencia de Aminoácidos , Brasil , Epítopos/genética , Humanos , Malaria Vivax/parasitología , Plasmodium vivax/aislamiento & purificación , Polimorfismo Genético/genética , Análisis de Secuencia de ADN/métodos
12.
Mem. Inst. Oswaldo Cruz ; 114: e190054, 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1012675

RESUMEN

BACKGROUND The central repetitive region (CRR) of the Plasmodium vivax circumsporozoite surface protein (CSP) is composed of a repetitive sequence that is characterised by three variants: VK210, VK247 and P. vivax-like. The most important challenge in the treatment of P. vivax infection is the possibility of differential response based on the parasite genotype. OBJECTIVES To characterise the CSP variants in P. vivax isolates from individuals residing in a malaria-endemic region in Brazil and to profile these variants based on sensitivity to chloroquine and mefloquine. METHODS The CSP variants were determined by sequencing and the sensitivity of the P. vivax isolates to chloroquine and mefloquine was determined by Deli-test. FINDINGS Although five different allele sizes were amplified, the sequencing results showed that all of the isolates belonged to the VK210 variant. However, we observed substantial genetic diversity in the CRR, resulting in the identification of 10 different VK210 subtypes. The frequency of isolates that were resistant to chloroquine and mefloquine was 11.8 and 23.8%, respectively. However, we did not observe any difference in the frequency of the resistant isolates belonging to the VK210 subtypes. MAIN CONCLUSION The VK210 variant is the most frequently observed in the studied region and there is significant genetic variability in the CRR of the P. vivax CSP. Moreover, the antimalarial drug sensitivity profiles of the isolates does not seem to be related to the VK210 subtypes.


Asunto(s)
Plasmodium vivax/efectos de los fármacos , Mefloquina/uso terapéutico , Cloroquina/uso terapéutico , Resistencia a Múltiples Medicamentos/inmunología , Brasil
13.
Infect Dis Poverty ; 7(1): 46, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29754588

RESUMEN

BACKGROUND: Brazil has seen a great decline in malaria and the country is moving towards elimination. However, for eventual elimination, the control program needs efficient tools in order to monitor malaria exposure and transmission. In this study, we aimed to evaluate whether seroprevalence to the circumsporozoite protein (CSP) is a good tool for monitoring the exposure to and/or evaluating the burden and distribution of Plasmodium species in the Brazilian Amazon. METHODS: Cross-sectional surveys were conducted in a rural area of Porto Velho, Rondônia state. Parasite infection was detected by microscopy and polymerase chain reaction. Antibodies to the sporozoite CSP repeats of Plasmodium vivax, P. falciparum, and P. malariae (PvCS, PfCS, and PmCS) were detected using the enzyme-linked immunosorbent assay technique. Human leukocyte antigen (HLA)-DRB1 and DQB1 genes were typed using Luminex® xMAP® technology. RESULTS: The prevalence of immunoglobulin G against P. vivax CSP peptide (62%) was higher than P. falciparum (49%) and P. malariae (46%) CSP peptide. Most of the studied individuals had antibodies to at least one of the three peptides (72%), 34% had antibodies to all three peptides and 28% were non-responders. Although the majority of the population was not infected at the time of the survey, 74.3% of parasite-negative individuals had antibodies to at least one of the CSPs. Importantly, among individuals carrying the haplotypes DRB1*04~DQB1*03, there was a significantly higher frequency of PfCS responders, and DRB1*16~DQB1*03 haplotype for PvCS and PfCS responders. In contrast, HLA-DRB1*01 and HLA-DQB1*05 allelic groups were associated with a lack of antibodies to P. vivax and P. falciparum CSP repeats, and the haplotype DRB1*01~DQB1*05 was also associated with non-responders, including non-responders to P. malariae. CONCLUSIONS: Our results show that in low transmission settings, naturally acquired antibody responses against the CSP repeats of P. vivax, P. falciparum, and P. malariae in a single cross-sectional study may not represent a valuable marker for monitoring recent malaria exposure, especially in an area with a high prevalence of P. vivax. Furthermore, HLA class II molecules play an important role in antibody response and require further study with a larger sample size. It will be of interest to consider HLA analysis when using serosurveillance to monitor malaria exposure among genetically diverse populations.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Malaria/epidemiología , Plasmodium/aislamiento & purificación , Proteínas Protozoarias/inmunología , Adolescente , Adulto , Brasil/epidemiología , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Población Rural , Estudios Seroepidemiológicos , Especificidad de la Especie , Adulto Joven
14.
Immun Inflamm Dis ; 6(2): 207-220, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29314720

RESUMEN

INTRODUCTION: A proliferation-inducing ligand (APRIL) and B cell activation factor (BAFF) are known to play a significant role in the pathogenesis of several diseases, including BAFF in malaria. The aim of this study was to investigate whether APRIL and BAFF plasma concentrations could be part of inflammatory responses associated with P. vivax and P. falciparum malaria in patients from the Brazilian Amazon. METHODS: Blood samples were obtained from P. vivax and P. falciparum malaria patients (n = 52) resident in Porto Velho before and 15 days after the beginning of treatment and from uninfected individuals (n = 12). We investigated APRIL and BAFF circulating levels and their association with parasitaemia, WBC counts, and cytokine/chemokine plasma levels. The expression levels of transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) on PBMC from a subset of 5 P. vivax-infected patients were analyzed by flow cytometry. RESULTS: APRIL plasma levels were transiently increased during acute P. vivax and P. falciparum infections whereas BAFF levels were only increased during acute P. falciparum malaria. Although P. vivax and P. falciparum malaria patients have similar cytokine profiles during infection, in P. vivax acute phase malaria, APRIL but not BAFF levels correlated positively with IL-1, IL-2, IL-4, IL-6, and IL-13 levels. We did not find any association between P. vivax parasitaemia and APRIL levels, while an inverse correlation was found between P. falciparum parasitaemia and APRIL levels. The percentage of TACI positive CD4+ and CD8+ T cells were increased in the acute phase P. vivax malaria. CONCLUSION: These findings suggest that the APRIL and BAFF inductions reflect different host strategies for controlling infection with each malaria species.


Asunto(s)
Factor Activador de Células B/sangre , Malaria Falciparum/sangre , Malaria Vivax/sangre , Malaria/sangre , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/sangre , Adulto , Antimaláricos/uso terapéutico , Factor Activador de Células B/inmunología , Brasil , Estudios de Casos y Controles , Quimioterapia Combinada/métodos , Femenino , Voluntarios Sanos , Interacciones Huésped-Parásitos/inmunología , Humanos , Interleucinas/sangre , Interleucinas/inmunología , Recuento de Leucocitos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Malaria/tratamiento farmacológico , Malaria/parasitología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología , Masculino , Parasitemia/inmunología , Parasitemia/parasitología , Plasmodium falciparum/inmunología , Plasmodium vivax/inmunología , Proteína Activadora Transmembrana y Interactiva del CAML/inmunología , Proteína Activadora Transmembrana y Interactiva del CAML/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/inmunología , Adulto Joven
15.
Am J Trop Med Hyg ; 97(5): 1581-1592, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29016339

RESUMEN

Peptide vaccine strategies using Plasmodium-derived antigens have emerged as an attractive approach against malaria. However, relatively few studies have been conducted with malaria-exposed populations from non-African countries. Herein, the seroepidemiological profile against Plasmodium falciparum of naturally exposed individuals from a Brazilian malaria-endemic area against synthetic peptides derived from vaccine candidates circumsporozoite protein (CSP), liver stage antigen-1 (LSA-1), erythrocyte binding antigen-175 (EBA-175), and merozoite surface protein-3 (MSP-3) was investigated. Moreover, human leukocyte antigen (HLA)-DRB1* and HLA-DQB1* were evaluated to characterize genetic modulation of humoral responsiveness to these antigens. The study was performed using blood samples from 187 individuals living in rural malaria-endemic villages situated near Porto Velho, Rondônia State. Specific IgG and IgM antibodies and IgG subclasses were detected by enzyme-linked immunosorbent assay, and HLA-DRB1* and HLA-DQB1* low-resolution typing was performed by PCR-SSP. All four synthetic peptides were broadly recognized by naturally acquired antibodies. Regarding the IgG subclass profile, only CSP induced IgG1 and IgG3 antibodies, which is an important fact given that the acquisition of protective immunity appears to be associated with the cytophilicity of IgG1 and IgG3 antibodies. HLA-DRB1*11 and HLA-DQB1*7 had the lowest odds of responding to EBA-175. Our results showed that CSP, LSA-1, EBA, and MSP-3 are immunogenic in natural conditions of exposure and that anti-EBA antibody responses appear to be modulated by HLA class II antigens.


Asunto(s)
Antígenos de Protozoos/inmunología , Cadenas beta de HLA-DQ/genética , Inmunidad Humoral , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Adolescente , Adulto , Anticuerpos Antiprotozoarios/sangre , Brasil/epidemiología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Malaria Falciparum/epidemiología , Masculino , Persona de Mediana Edad , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Esporozoítos/inmunología , Adulto Joven
16.
PLoS Negl Trop Dis ; 11(2): e0005344, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28158176

RESUMEN

The Plasmodium vivax Cell-traversal protein for ookinetes and sporozoites (PvCelTOS) plays an important role in the traversal of host cells. Although essential to PvCelTOS progress as a vaccine candidate, its genetic diversity remains uncharted. Therefore, we investigated the PvCelTOS genetic polymorphism in 119 field isolates from five different regions of Brazilian Amazon (Manaus, Novo Repartimento, Porto Velho, Plácido de Castro and Oiapoque). Moreover, we also evaluated the potential impact of non-synonymous mutations found in the predicted structure and epitopes of PvCelTOS. The field isolates showed high similarity (99.3% of bp) with the reference Sal-1 strain, presenting only four Single-Nucleotide Polymorphisms (SNP) at positions 24A, 28A, 109A and 352C. The frequency of synonymous C109A (82%) was higher than all others (p<0.0001). However, the non-synonymous G28A and G352C were observed in 9.2% and 11.7% isolates. The great majority of the isolates (79.8%) revealed complete amino acid sequence homology with Sal-1, 10.9% presented complete homology with Brazil I and two undescribed PvCelTOS sequences were observed in 9.2% field isolates. Concerning the prediction analysis, the N-terminal substitution (Gly10Ser) was predicted to be within a B-cell epitope (PvCelTOS Accession Nos. AB194053.1) and exposed at the protein surface, while the Val118Leu substitution was not a predicted epitope. Therefore, our data suggest that although G28A SNP might interfere in potential B-cell epitopes at PvCelTOS N-terminal region the gene sequence is highly conserved among the isolates from different geographic regions, which is an important feature to be taken into account when evaluating its potential as a vaccine candidate.


Asunto(s)
Epítopos/genética , Epítopos/inmunología , Variación Genética , Plasmodium vivax/genética , Plasmodium vivax/inmunología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Brasil , Secuencia Conservada , Mutación Missense , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
17.
Front Immunol ; 8: 77, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28223984

RESUMEN

The cell-traversal protein for ookinetes and sporozoites (CelTOS), a highly conserved antigen involved in sporozoite motility, plays an important role in the traversal of host cells during the preerythrocytic stage of Plasmodium species. Recently, it has been considered an alternative target when designing novel antimalarial vaccines against Plasmodium falciparum. However, the potential of Plasmodium vivax CelTOS as a vaccine target is yet to be explored. This study evaluated the naturally acquired immune response against a recombinant P. vivax CelTOS (PvCelTOS) (IgG and IgG subclass) in 528 individuals from Brazilian Amazon, as well as the screening of B-cell epitopes in silico and peptide assays to associate the breadth of antibody responses of those individuals with exposition and/or protection correlates. We show that PvCelTOS is naturally immunogenic in Amazon inhabitants with 94 individuals (17.8%) showing specific IgG antibodies against the recombinant protein. Among responders, the IgG reactivity indexes (RIs) presented a direct correlation with the number of previous malaria episodes (p = 0.003; r = 0.315) and inverse correlation with the time elapsed from the last malaria episode (p = 0.031; r = -0.258). Interestingly, high responders to PvCelTOS (RI > 2) presented higher number of previous malaria episodes, frequency of recent malaria episodes, and ratio of cytophilic/non-cytophilic antibodies than low responders (RI < 2) and non-responders (RI < 1). Moreover, a high prevalence of the cytophilic antibody IgG1 over all other IgG subclasses (p < 0.0001) was observed. B-cell epitope mapping revealed five immunogenic regions in PvCelTOS, but no associations between the specific IgG response to peptides and exposure/protection parameters were found. However, the epitope (PvCelTOSI136-E143) was validated as a main linear B-cell epitope, as 92% of IgG responders to PvCelTOS were also responders to this peptide sequence. This study describes for the first time the natural immunogenicity of PvCelTOS in Amazon individuals and identifies immunogenic regions in a full-length protein. The IgG magnitude was mainly composed of cytophilic antibodies (IgG1) and associated with recent malaria episodes. The data presented in this paper add further evidence to consider PvCelTOS as a vaccine candidate.

18.
Front Microbiol ; 7: 982, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446022

RESUMEN

Malaria and Cutaneous Leishmaniasis (CL) are co-endemic throughout large regions in tropical countries and co-infection may impact the evolution of host-parasite interactions. In the present study, we evaluate Malaria/Leishmaniasis disease outcome, Th1/Th2 cytokine levels and the CD4 and CD8 T-cell profiles in a co-infection murine model (BALB/c) of Plasmodium yoelii 17XNL (Py) and Leishmania amazonensis (La) or L. braziliensis (Lb). Malaria parasitaemia was assessed through blood strains stained with Giemsa. Leishmania lesions were monitored with a digital caliper and parasite loads determined by limiting-dilution assay. Serum levels of IFN-γ, TNF, IL-2, IL-4, IL-6, IL-10, and IL-17 were determined using multiplexed bead assay and expression of CD3, CD4, and CD8 T-cells markers were determined by Flow Cytometry in the thymus, spleens and lymph nodes. Parasitaemia in Lb+Py co-infected group was lower than in Py single-infected group, suggesting a protective effect of Lb co-infection in Malaria progression. In contrast, La+Py co-infection increased parasitaemia, patent infection and induced mortality in non-lethal Malaria infection. Regarding Leishmaniasis, Lb+Py co-infected group presented smaller lesions and less ulceration than Lb single-infected animals. In contrast, La+Py co-infected group presented only a transitory delay on the development of lesions when compared to La single-infected mice. Decreased levels of IFN-γ, TNF, IL-6, and IL-10 were observed in the serum of co-infected groups, demonstrating a modulation of Malaria immune response by Leishmania co-infections. We observed an intense thymic atrophy in Py single-infected and co-infected groups, which recovered earlier in co-infected animals. The CD4 and CD8 T cell profiles in thymus, spleens and lymph nodes did not differ between Py single and co-infected groups, except for a decrease in CD4(+)CD8(+) T cells which also increased faster in co-infected mice. Our results suggest that Py and Leishmania co-infection may change disease outcome. Interestingly Malaria outcome can be altered according to the Leishmania specie involved. Alternatively Malaria infection reduced the severity or delayed the onset of leishmanial lesions. These alterations in Malaria and CL development seem to be closely related with changes in the immune response as demonstrated by alteration in serum cytokine levels and thymus/spleens T cell phenotypes dynamics during infection.

19.
Malar J ; 14: 442, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26546161

RESUMEN

BACKGROUND: Polyparasitism is a common condition in humans but its impact on the host immune system and clinical diseases is still poorly understood. There are few studies of the prevalence and the effect of malaria-intestinal parasite co-infections in the immune response to malaria vaccine candidates. The present study determines whether the presence of malaria and intestinal parasites co-infection is associated with impaired IgG responses to Plasmodium vivax AMA-1 and MSP-119 in a rural population of the Brazilian Amazon. METHODS: A cross-sectional survey was performed in a rural area of Rondonia State and 279 individuals were included in the present study. At recruitment, whole blood was collected and Plasmodium and intestinal parasites were detected by microscopy and molecular tests. Blood cell count and haemoglobin were also tested and antibody response specific to P. vivax AMA-1 and MSP-119 was measured in plasma by ELISA. The participants were grouped according to their infection status: singly infected with Plasmodium (M); co-infected with Plasmodium and intestinal parasites (CI); singly infected with intestinal parasites (IP) and negative (N) for both malaria and intestinal parasites. RESULTS: The prevalence of intestinal parasites was significantly higher in individuals with malaria and protozoan infections were more prevalent. IgG antibodies to PvAMA-1 and/or PvMSP-119 were detected in 74 % of the population. The prevalence of specific IgG was similar for both proteins in all four groups and among the groups the lowest prevalence was in IP group. The cytophilic sub-classes IgG1 and IgG3 were predominant in all groups for PvAMA-1 and IgG1, IgG3 and IgG4 for PvMSP-119. In the case of non-cytophilic antibodies to PvAMA-1, IgG2 was significantly higher in IP and N group when compared to M and CI while IgG4 was higher in IP group. CONCLUSIONS: The presence of intestinal parasites, mainly protozoans, in malaria co-infected individuals does not seem to alter the antibody immune responses to P. vivax AMA-1 and MSP-119. However, IgG response to both AMA1 and MSP1 were lower in individuals with intestinal parasites.


Asunto(s)
Antígenos de Protozoos/genética , Inmunoglobulina G/inmunología , Parasitosis Intestinales/epidemiología , Malaria/epidemiología , Proteínas de la Membrana/genética , Proteína 1 de Superficie de Merozoito/genética , Proteínas Protozoarias/genética , Adulto , Antígenos de Protozoos/metabolismo , Brasil/epidemiología , Coinfección/epidemiología , Coinfección/inmunología , Coinfección/parasitología , Humanos , Parasitosis Intestinales/inmunología , Parasitosis Intestinales/parasitología , Malaria/inmunología , Malaria/parasitología , Proteínas de la Membrana/metabolismo , Proteína 1 de Superficie de Merozoito/metabolismo , Plasmodium vivax/fisiología , Prevalencia , Proteínas Protozoarias/metabolismo , Adulto Joven
20.
Malar J ; 14: 30, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25627396

RESUMEN

BACKGROUND: Cytokines play an important role in human immune responses to malaria and variation in their production may influence the course of infection and determine the outcome of the disease. The differential production of cytokines has been linked to single nucleotide polymorphisms in gene promoter regions, signal sequences, and gene introns. Although some polymorphisms play significant roles in susceptibility to malaria, gene polymorphism studies in Brazil are scarce. METHODS: A population of 267 individuals from Brazilian Amazon exposed to malaria was genotyped for five single nucleotide polymorphisms (SNPs), IFNG + 874 T/A, IL10A-1082G/A, IL10A-592A/C, IL10A-819 T/C and NOS2A-954G/C. Specific DNA fragments were amplified by polymerase chain reaction, allowing the detection of the polymorphism genotypes. The polymorphisms IL10A-592A/C and IL10A-819 T/C were estimated by a single analysis due to the complete linkage disequilibrium between the two SNPs with D' = 0.99. Plasma was used to measure the levels of IFN-γ and IL-10 cytokines by Luminex and nitrogen radicals by Griess reaction. RESULTS: No differences were observed in genotype and allelic frequency of IFNG + 874 T/A and NOS2A-954G/C between positive and negative subjects for malaria infection. Interesting, the genotype NOS2A-954C/C was not identified in the study population. Significant differences were found in IL10A-592A/C and IL10A-819 T/C genotypes distribution, carriers of IL10A -592A/-819 T alleles (genotypes AA/TT + AC/TC) were more frequent among subjects with malaria than in negative subjects that presented a higher frequency of the variant C allele (p < 0.0001). The presence of the allele C was associated with low producer of IL-10 and low parasitaemia. In addition, the GTA haplotypes formed from combinations of investigated polymorphisms in IL10A were significantly associated with malaria (+) and the CCA haplotype with malaria (-) groups. The IL10A-1082G/A polymorphism showed high frequency of heterozygous AG genotype in the population, but it was not possible to infer any association of the polymorphism because their distribution was not in Hardy Weinberg equilibrium. CONCLUSION: This study shows that the IL10A-592A/C and IL10A-819 T/C polymorphisms were associated with malaria and decreased IL-10 levels and low parasite density suggesting that this polymorphism influence IL-10 levels and may influence in the susceptibility to clinical malaria.


Asunto(s)
Interleucina-10/sangre , Interleucina-10/genética , Malaria/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Adulto , Anciano , Brasil/epidemiología , Niño , Preescolar , Citocinas/sangre , Citocinas/genética , Enfermedades Endémicas , Femenino , Frecuencia de los Genes , Haplotipos , Humanos , Desequilibrio de Ligamiento , Malaria/epidemiología , Masculino , Persona de Mediana Edad , Parasitemia/epidemiología , Parasitemia/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA