Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196772

RESUMEN

Rice (Oryza sativa L.) and many other wetland plants form an apoplastic barrier in the outer parts of the roots to restrict radial O2 loss to the rhizosphere during soil flooding. This barrier facilitates longitudinal internal O2 diffusion via gas-filled tissues from shoot to root apices, enabling root growth in anoxic soils. We tested the hypothesis that Leaf Gas Film 1 (LGF1), which influences leaf hydrophobicity in rice, plays a crucial role in tight outer apoplastic barriers formation in rice roots. We examined the roots of a rice mutant (dripping wet leaf 7, drp7) lacking functional LGF1, its wild type, and an LGF1 overexpression line for their capacity to develop outer apoplastic barriers that restrict radial O2 loss. We quantified the chemical composition of the outer part of the root and measured radial O2 diffusion from intact roots. The drp7 mutant exhibited a weak barrier to radial O2 loss compared to the wild type. However, introducing functional LGF1 into the mutant fully restored tight barrier function. The formation of a tight barrier to radial O2 loss was associated with increased glycerol ester levels in exodermal cells, rather than differences in total root suberization or lignification. These results demonstrate that, in addition to its role in leaf hydrophobicity regulation, LGF1 plays an important role in controlling the function of the outer apoplastic barriers in roots. Our study suggests that increased deposition of glycerol esters in the suberized root exodermis establishes a tight barrier to radial O2 loss in rice roots.

2.
New Phytol ; 243(1): 72-81, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703003

RESUMEN

Woody plants display some photosynthetic activity in stems, but the biological role of stem photosynthesis and the specific contributions of bark and wood to carbon uptake and oxygen evolution remain poorly understood. We aimed to elucidate the functional characteristics of chloroplasts in stems of different ages in Fraxinus ornus. Our investigation employed diverse experimental approaches, including microsensor technology to assess oxygen production rates in whole stem, bark, and wood separately. Additionally, we utilized fluorescence lifetime imaging microscopy (FLIM) to characterize the relative abundance of photosystems I and II (PSI : PSII chlorophyll ratio) in bark and wood. Our findings revealed light-induced increases in O2 production in whole stem, bark, and wood. We present the radial profile of O2 production in F. ornus stems, demonstrating the capability of stem chloroplasts to perform light-dependent electron transport. Younger stems exhibited higher light-induced O2 production and dark respiration rates than older ones. While bark emerged as the primary contributor to net O2 production under light conditions, our data underscored that wood chloroplasts are also photosynthetically active. The FLIM analysis unveiled a lower PSI abundance in wood than in bark, suggesting stem chloroplasts are not only active but also acclimate to the spectral composition of light reaching inner compartments.


Asunto(s)
Luz , Oxígeno , Tallos de la Planta , Madera , Tallos de la Planta/metabolismo , Tallos de la Planta/efectos de la radiación , Oxígeno/metabolismo , Madera/metabolismo , Oscuridad , Fraxinus/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Corteza de la Planta/metabolismo , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo
3.
Plant Cell ; 36(6): 2393-2409, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38489602

RESUMEN

Optimizing the root architecture of crops is an effective strategy for improving crop yields. Soil compaction is a serious global problem that limits crop productivity by restricting root growth, but the underlying molecular mechanisms are largely unclear. Here, we show that ethylene stimulates rice (Oryza sativa) crown root development in response to soil compaction. First, we demonstrate that compacted soil promotes ethylene production and the accumulation of ETHYLENE INSENSITIVE 3-LIKE 1 (OsEIL1) in rice roots, stimulating crown root primordia initiation and development, thereby increasing crown root number in lower stem nodes. Through transcriptome profiling and molecular analyses, we reveal that OsEIL1 directly activates the expression of WUSCHEL-RELATED HOMEOBOX 11 (OsWOX11), an activator of crown root emergence and growth, and that OsWOX11 mutations delay crown root development, thus impairing the plant's response to ethylene and soil compaction. Genetic analysis demonstrates that OsWOX11 functions downstream of OsEIL1. In summary, our results demonstrate that the OsEIL1-OsWOX11 module regulates ethylene action during crown root development in response to soil compaction, providing a strategy for the genetic modification of crop root architecture and grain agronomic traits.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Raíces de Plantas , Factores de Transcripción , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Suelo/química , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
4.
Funct Plant Biol ; 51(1): NULL, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37814289

RESUMEN

Floods and droughts are becoming more frequent as a result of climate change and it is imperative to find ways to enhance the resilience of staple crops to abiotic stresses. This is crucial to sustain food production during unfavourable conditions. Here, we analyse the current knowledge about suberised and lignified outer apoplastic barriers, focusing on the functional roles of the barrier to radial O2 loss formed as a response to soil flooding and we discuss whether this trait also provides resilience to multiple abiotic stresses. The barrier is composed of suberin and lignin depositions in the exodermal and/or sclerenchyma cell walls. In addition to the important role during soil flooding, the barrier can also restrict radial water loss, prevent phytotoxin intrusion, salt intrusion and the main components of the barrier can impede invasion of pathogens in the root. However, more research is needed to fully unravel the induction pathway of the outer apoplastic barriers and to address potential trade-offs such as reduced nutrient or water uptake. Nevertheless, we suggest that the outer apoplastic barriers might act as a jack of all trades providing tolerance to multiple abiotic and/or biotic stressors.


Asunto(s)
Raíces de Plantas , Agua , Raíces de Plantas/metabolismo , Transporte Biológico , Agua/metabolismo , Estrés Fisiológico , Suelo
5.
New Phytol ; 238(5): 1825-1837, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36928886

RESUMEN

The root barrier to radial O2 loss (ROL) is a key root trait preventing O2 loss from roots to anoxic soils, thereby enabling root growth into anoxic, flooded soils. We hypothesized that the ROL barrier can also prevent intrusion of hydrogen sulphide (H2 S), a potent phytotoxin in flooded soils. Using H2 S- and O2 -sensitive microsensors, we measured the apparent permeance to H2 S of rice roots, tested whether restricted H2 S intrusion reduced its adverse effects on root respiration, and whether H2 S could induce the formation of a ROL barrier. The ROL barrier reduced apparent permeance to H2 S by almost 99%, greatly restricting H2 S intrusion. The ROL barrier acted as a shield towards H2 S; O2 consumption in roots with a ROL barrier remained unaffected at high H2 S concentration (500 µM), compared to a 67% decline in roots without a barrier. Importantly, low H2 S concentrations induced the formation of a ROL barrier. In conclusion, the ROL barrier plays a key role in protecting against H2 S intrusion, and H2 S can act as an environmental signalling molecule for the induction of the barrier. This study demonstrates the multiple functions of the suberized/lignified outer part of the rice root beyond that of restricting ROL.


Asunto(s)
Sulfuro de Hidrógeno , Oryza , Oxígeno , Sulfuro de Hidrógeno/farmacología , Raíces de Plantas , Suelo
6.
J Exp Bot ; 74(6): 2112-2126, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36629284

RESUMEN

Excess water can induce flooding stress resulting in yield loss, even in wetland crops such as rice (Oryza). However, traits from species of wild Oryza have already been used to improve tolerance to abiotic stress in cultivated rice. This study aimed to establish root responses to sudden soil flooding among eight wild relatives of rice with different habitat preferences benchmarked against three genotypes of O. sativa. Plants were raised hydroponically, mimicking drained or flooded soils, to assess the plasticity of adventitious roots. Traits included were apparent permeance (PA) to O2 of the outer part of the roots, radial water loss, tissue porosity, apoplastic barriers in the exodermis, and root anatomical traits. These were analysed using a plasticity index and hierarchical clustering based on principal component analysis. For example, O. brachyantha, a wetland species, possessed very low tissue porosity compared with other wetland species, whereas dryland species O. latifolia and O. granulata exhibited significantly lower plasticity compared with wetland species and clustered in their own group. Most species clustered according to growing conditions based on PA, radial water loss, root porosity, and key anatomical traits, indicating strong anatomical and physiological responses to sudden soil flooding.


Asunto(s)
Oryza , Oryza/genética , Oxígeno , Raíces de Plantas/fisiología , Suelo , Agua , Nutrientes
7.
New Phytol ; 232(3): 1520, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34405900
8.
New Phytol ; 231(4): 1365-1376, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34013633

RESUMEN

The root barrier to radial O2 loss (ROL) is a trait enabling waterlogging tolerance of plants. The ROL barrier restricts O2 diffusion to the anoxic soil so that O2 is retained inside root tissues. We hypothesised that the ROL barrier can also restrict radial diffusion of other gases (H2 and water vapour) in rice roots with a barrier to ROL. We used O2 and H2 microsensors to measure ROL and permeability of rice roots, and gravimetric measurements to assess the influence of the ROL barrier on radial water loss (RWL). The ROL barrier greatly restricted radial diffusion of O2 as well as H2 . At 60 kPa pO2 , we found no radial diffusion of O2 across the barrier, and for H2 the barrier reduced radial diffusion by 73%. Similarly, RWL was reduced by 93% in roots with a ROL barrier. Our study showed that the root barrier to ROL not only completely blocks radial O2 diffusion under steep concentration gradients but is also a diffusive barrier to H2 and to water vapour. The strong correlation between ROL and RWL presents a case in which simple measurements of RWL can be used to predict ROL in screening studies with a focus on waterlogging tolerance.


Asunto(s)
Oryza , Oxígeno , Raíces de Plantas , Suelo , Vapor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA