RESUMEN
Molecular dynamics with excited normal modes (MDeNM) is an enhanced sampling method for exploring conformational changes in proteins with minimal biases. The excitation corresponds to injecting kinetic energy along normal modes describing intrinsic collective motions. Herein, we developed a new automated open-source implementation, MDexciteR (https://github.com/mcosta27/MDexciteR), enabling the integration of MDeNM with two commonly used simulation programs with GPU support. Second, we generalized the method to include the excitation of principal components calculated from experimental ensembles. Finally, we evaluated whether the use of coarse-grained normal modes calculated with elastic network representations preserved the performance and accuracy of the method. The advantages and limitations of these new approaches are discussed based on results obtained for three different protein test cases: two globular and a protein/membrane system.
RESUMEN
The activation process of phospholipase A2-like (PLA2-like) toxins is a key step in their molecular mechanism, which involves oligomeric changes leading to the exposure of specific sites. Few studies have focused on the characterization of allosteric activators and the features that distinguish them from inhibitors. Herein, a comprehensive study with the BthTX-I toxin from Bothrops jararacussu venom bound or unbound to α-tocopherol (αT) was carried out. The oligomerization state of BthTX-I bound or unbound to αT in solution was studied and indicated that the toxin is predominantly monomeric but tends to oligomerize when complexed with αT. In silico molecular simulations showed the toxin presents higher conformational changes in the absence of αT, which suggests that it is important to stabilize the structure of the toxin. The transition between the two states (active/inactive) was also studied, showing that only the unbound BthTX-I system could migrate to the inactive state. In contrast, the presence of αT induces the toxin to leave the inactive state, guiding it towards the active state, with more regions exposed to the solvent, particularly its active site. Finally, the structural determinants necessary for a molecule to be an inhibitor or activator were analyzed in light of the obtained results.
Asunto(s)
Bothrops , Venenos de Crotálidos/química , Regulación Alostérica , Animales , Simulación por Computador , Dispersión Dinámica de Luz , Simulación de Dinámica Molecular , Fosfolipasas A2/química , Multimerización de ProteínaRESUMEN
Many receptors elicit signal transduction by activating multiple intracellular pathways. This transduction can be triggered by a non-specific ligand, which simultaneously activates all the signaling pathways of the receptors. However, the binding of one biased ligand preferentially trigger one pathway over another, in a process called biased signaling. The identification the functional motions related to each of these distinct pathways has a direct impact on the development of new effective and specific drugs. We show here how to detect specific functional motions by considering the case of the NGF/TrkA-Ig2 complex. NGF-mediated TrkA receptor activation is dependent on specific structural motions that trigger the neuronal growth, development, and survival of neurons in nervous system. The R221W mutation in the ngf gene impairs nociceptive signaling. We discuss how the large-scale structural effects of this mutation lead to the suppression of collective motions necessary to induce TrkA activation of nociceptive signaling. Our results suggest that subtle changes in the NGF interaction network due to the point mutation are sufficient to inhibit the motions of TrkA receptors putatively linked to nociception. The methodological approach presented in this article, based jointly on the normal mode analysis and the experimentally observed functional alterations due to point mutations provides an essential tool to reveal the structural changes and motions linked to the disease, which in turn could be necessary for a drug design study.
Asunto(s)
Modelos Moleculares , Factor de Crecimiento Nervioso/metabolismo , Mutación Puntual , Receptor trkA/genética , Receptor trkA/metabolismo , Transducción de Señal , Movimiento , Factor de Crecimiento Nervioso/química , Unión Proteica , Conformación Proteica , Receptor trkA/químicaRESUMEN
Previous studies demonstrated the efficiency of the Molecular Dynamics with excited Normal Modes (MDeNM) method on the characterization of large structural changes at a low computational cost. We present here MDeNM-EMfit, an extension of the original method designed to the flexible fit of structures into cryo-EM maps. Here, instead of a uniform exploration of the collective motions described by normal modes, sampling is directed toward conformations with increased correlations with the experimental map. Future perspectives to improve the accuracy of fitting and speed of calculations are discussed in light of the results.
Asunto(s)
Simulación de Dinámica Molecular , Microscopía por Crioelectrón , Conformación ProteicaRESUMEN
NS3 is an important therapeutic target for direct-acting antiviral (DAA) drugs. However, many patients treated with DAAs have unsustained virologic response (UVR) due to the high mutation rate of HCV. The aim of this work was to shed some light on the puzzling molecular mechanisms of the virus's of patients who showed high viral loads even under treatment with DAA. Bioinformatics tools, molecular modelling analyses were employed to identify mutations associated with HCV resistance to boceprevir and possible structural features related to this phenomenon. We identified two mutations of NS3 that may be associated with HCV resistance: D168N and L153I. The substitution D168N was previously reported in the literature as related with drug failure. Additionally, we identified that its molecular resistance mechanism can be explained by the destabilization of receptor-ligand hydrogen bonds. For the L153I mutation, the resistance mechanism is different from previous models reported in the literature. The L153I substitution decreases the S139 deprotonation susceptibility, and consequently, this mutation impairs the covalent binding between the residue S139 from NS3 and the electrophilic trap on boceprevir, which can induce drug failure. These results were supported by the time course analysis of the mutations of the NS3 protease, which showed that boceprevir was designed for enzymes with an L residue at position 153; however, the sequences with I153 are predominant nowadays. The results presented here could be used to infer about resistance in others DAA, mainly protease inhibitors.
Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral/genética , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Proteínas no Estructurales Virales/genética , Antivirales/química , Farmacorresistencia Viral/efectos de los fármacos , Hepatitis C Crónica/virología , Humanos , Modelos Moleculares , Mutación , Prolina/análogos & derivados , Prolina/química , Prolina/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/químicaRESUMEN
There are two different prion conformations: (1) the cellular natural (PrPC) and (2) the scrapie (PrPSc), an infectious form that tends to aggregate under specific conditions. PrPC and PrPSc are widely different regarding secondary and tertiary structures. PrPSc contains more and longer ß-strands compared to PrPC. The lack of solved PrPSc structures precludes a proper understanding of the mechanisms related to the transition between cellular and scrapie forms, as well as the aggregation process. In order to investigate the conformational transition between PrPC and PrPSc, we applied MDeNM (molecular dynamics with excited normal modes), an enhanced sampling simulation technique that has been recently developed to probe large structural changes. These simulations yielded new structural rearrangements of the cellular prion that would have been difficult to obtain with standard MD simulations. We observed an increase in ß-sheet formation under low pH (≤ 4) and upon oligomerization, whose relevance was discussed on the basis of the energy landscape theory for protein folding. The characterization of intermediate structures corresponding to transition states allowed us to propose a conversion model from the cellular to the scrapie prion, which possibly ignites the fibril formation. This model can assist the design of new drugs to prevent neurological disorders related to the prion aggregation mechanism.
Asunto(s)
Simulación de Dinámica Molecular , Proteínas PrPC/química , Proteínas PrPSc/química , Agregado de Proteínas , Humanos , Concentración de Iones de Hidrógeno , Conformación Proteica en Lámina beta , Pliegue de ProteínaRESUMEN
Dipeptidyl peptidase-4 (DPP-4) is a target to treat type II diabetes mellitus. Therefore, it is important to understand the structural aspects of this enzyme and its interaction with drug candidates. This study involved molecular dynamics simulations, normal mode analysis, binding site detection and analysis of molecular interactions to understand the protein dynamics. We identified some DPP-4 functional motions contributing to the exposure of the binding sites and twist movements revealing how the two enzyme chains are interconnected in their bioactive form, which are defined as chains A (residues 40-767) and B (residues 40-767). By understanding the enzyme structure, its motions and the regions of its binding sites, it will be possible to contribute to the design of new DPP-4 inhibitors as drug candidates to treat diabetes.
Asunto(s)
Dipeptidil Peptidasa 4/química , Ligandos , Conformación Molecular , Simulación de Dinámica Molecular , Sitios de Unión , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Unión Proteica , Relación Estructura-ActividadRESUMEN
Thioredoxins are multifunctional oxidoreductase proteins implicated in the antioxidant cellular apparatus and oxidative stress. They are involved in several pathologies and are promising anticancer targets. Identification of noncatalytic binding sites is of great interest for designing new allosteric inhibitors of thioredoxin. In a recent work, we predicted normal mode motions of human thioredoxin 1 and identified two major putative hydrophobic binding sites. In this work we investigated noncovalent interactions of human thioredoxin 1 with three phenotiazinic drugs acting as prooxidant compounds by using molecular docking and circular dichroism spectrometry to probe ligand binding into the previously predicted allosteric hydrophobic pockets. Our in silico and CD spectrometry experiments suggested one preferred allosteric binding site involving helix 3 and adopting the best druggable conformation identified by NMA. The CD spectra showed binding of thioridazine into thioredoxin 1 and suggested partial helix unfolding, which most probably concerns helix 3. Taken together, these data support the strategy to design thioredoxin inhibitors targeting a druggable allosteric binding site.
Asunto(s)
Sitio Alostérico , Fenotiazinas/farmacología , Tiorredoxinas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Fenotiazinas/química , Unión Proteica , Tiorredoxinas/químicaRESUMEN
Proteins are found in solution as ensembles of conformations in dynamic equilibrium. Exploration of functional motions occurring on micro- to millisecond time scales by molecular dynamics (MD) simulations still remains computationally challenging. Alternatively, normal mode (NM) analysis is a well-suited method to characterize intrinsic slow collective motions, often associated with protein function, but the absence of anharmonic effects preclude a proper characterization of conformational distributions in a multidimensional NM space. Using both methods jointly appears to be an attractive approach that allows an extended sampling of the conformational space. In line with this view, the MDeNM (molecular dynamics with excited normal modes) method presented here consists of multiple-replica short MD simulations in which motions described by a given subset of low-frequency NMs are kinetically excited. This is achieved by adding additional atomic velocities along several randomly determined linear combinations of NM vectors, thus allowing an efficient coupling between slow and fast motions. The relatively high-energy conformations generated with MDeNM are further relaxed with standard MD simulations, enabling free energy landscapes to be determined. Two widely studied proteins were selected as examples: hen egg lysozyme and HIV-1 protease. In both cases, MDeNM provides a larger extent of sampling in a few nanoseconds, outperforming long standard MD simulations. A high degree of correlation with motions inferred from experimental sources (X-ray, EPR, and NMR) and with free energy estimations obtained by metadynamics was observed. Finally, the large sets of conformations obtained with MDeNM can be used to better characterize relevant dynamical populations, allowing for a better interpretation of experimental data such as SAXS curves and NMR spectra.
Asunto(s)
Proteasa del VIH/química , Simulación de Dinámica Molecular , Muramidasa/química , Proteasa del VIH/metabolismo , Muramidasa/metabolismo , Conformación ProteicaRESUMEN
The emergence of drug resistant mutations due to the selective pressure exerted by antiretrovirals, including protease inhibitors (PIs), remains a major problem in the treatment of AIDS. During PIs therapy, the occurrence of primary mutations in the wild type HIV-1 protease reduces both the affinity for the inhibitors and the viral replicative capacity compared to the wild type (WT) protein, but additional mutations compensate for this reduced viral fitness. To investigate this phenomenon from the structural point of view, we combined Molecular Dynamics and Normal Mode Analysis to analyze and compare the variations of the flexibility of C-alpha atoms and the differences in hydrogen bond (h-bond) network between the WT and double mutants. In most cases, the flexibility profile of the double mutants was more often similar to that of the WT than to that of the related single base mutants. All single mutants showed a significant alteration in h-bond formation compared to WT. Most of the significant changes occur in the border between the flap and cantilever regions. We found that all the considered double mutants have their h-bond pattern significantly altered in comparison to the respective single base mutants affecting their flexibility profile that becomes more similar to that of WT. This WT flexibility restoration in the double mutants appears as an important factor for the HIV-1 fitness recovery observed in patients.
Asunto(s)
Proteasa del VIH/genética , VIH-1/genética , Mutación/genética , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/efectos de los fármacos , Humanos , Enlace de Hidrógeno , Simulación de Dinámica MolecularRESUMEN
The Thioredoxin (Trx) system plays important roles in several diseases (e.g. cancer, viral infections, cardiovascular and neurodegenerative diseases). Therefore, there is a therapeutic interest in the design of modulators of this system. In this work, we used normal mode analysis to identify putative binding site regions for Human Trx1 that arise from global motions. We identified three possible inhibitor's binding regions that corroborate previous experimental findings. We show that intrinsic motions of the protein are related to the exposure of hydrophobic regions and non-active site cysteines that could constitute new binding sites for inhibitors.
Asunto(s)
Tiorredoxinas/química , Regulación Alostérica , Dominio Catalítico , Descubrimiento de Drogas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Estructura Secundaria de Proteína , Bibliotecas de Moléculas Pequeñas , Propiedades de Superficie , Termodinámica , Tiorredoxinas/antagonistas & inhibidoresRESUMEN
The antiretroviral chemotherapy helps to reduce the mortality of HIVs infected patients. However, RNA dependant virus replication has a high mutation rate. Human immunodeficiency virus Type 1 protease plays an essential role in viral replication cycle. This protein is an important target for therapy with viral protein inhibitors. There are few works using normal mode analysis to investigate this problem from the structural changes viewpoint. The investigation of protein flexibility may be important for the study of processes associated with conformational changes and state transitions. The normal mode analysis allowed us to investigate structural changes in the protease (such as flexibility) in a straightforward way and try to associate these changes with the increase of fitness for each positively selected HIV-1 mutant protease of patients treated with several protease inhibitors (saquinavir, indinavir, ritonavir, nelfinavir, lopinavir, fosamprenavir, atazanavir, darunavir, and tripanavir) in combination or separately. These positively selected mutations introduce significant flexibility in important regions such as the active site cavity and flaps. These mutations were also able to cause changes in accessible solvent area. This study showed that the majority of HIV-1 protease mutants can be grouped into two main classes of protein flexibility behavior. We presented a new approach to study structural changes caused by positively selected mutations in a pathogen protein, for instance the HIV-1 protease and their relationship with their resistance mechanism against known inhibitors. The method can be applied to any pharmaceutically relevant pathogen proteins and could be very useful to understand the effects of positively selected mutations in the context of structural changes.
Asunto(s)
Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/farmacología , Proteasa del VIH/química , Proteasa del VIH/genética , VIH-1/enzimología , VIH-1/genética , Mutación , Análisis por Conglomerados , Farmacorresistencia Viral , Aptitud Genética , Proteasa del VIH/metabolismo , Humanos , Modelos Moleculares , Docilidad , Estructura Terciaria de Proteína , Selección GenéticaRESUMEN
Describing biological macromolecular energetics from computer simulations can pose major challenges, and often necessitates enhanced conformational sampling. We describe the calculation of conformational free-energy profiles along carefully chosen collective coordinates: "consensus" normal modes, developed recently as robust alternatives to conventional normal modes. In an application to the HIV-1 protease, we obtain efficient sampling of significant flap opening movements governing inhibitor binding from relatively short simulations, in close correspondence with experimental results.
RESUMEN
Protein flexibility is essential for enzymatic function, ligand binding, and protein-protein or protein-nucleic acid interactions. Normal mode analysis has increasingly been shown to be well suited for studying such flexibility, as it can be used to identify favorable structural deformations that correspond to functional motions. However, normal modes are strictly relevant to a single structure, reflecting a particular minimum on a complex energy surface, and are thus susceptible to artifacts. We describe a new theoretical framework for determining "consensus" normal modes from a set of related structures, such as those issuing from a short molecular dynamics simulation. This approach is more robust than standard normal mode analysis, and provides higher collectivity and symmetry properties. In an application to HIV-1 protease, the low-frequency consensus modes describe biologically relevant motions including flap opening and closing that can be used in interpreting structural changes accompanying the binding of widely differing inhibitors.