RESUMEN
Cystic echinococcosis is a global parasitic zoonosis caused by infection with the larval stage of Echinococcus granulosus sensu lato. Cystic echinococcosis affects more than 1 million people worldwide, causing important economic costs in terms of management and livestock associated losses. Albendazole is the main drug used in treating human cystic echinococcosis. In spite of this, its low aqueous solubility, poor absorption, and consequently erratic bioavailability are the cause of its chemotherapeutic failures. Based on the described problem, new treatment alternatives urgently need to be developed. The aim of the present research was to study the in vitro and in vivo efficacy of cannabidiol (CBD), the second most abundant component of the Cannabis sativa plant, was demonstrated against E. granulosus sensu stricto. CBD (50 µg/mL) caused a decrease in protoscoleces viability of 80 % after 24 h of treatment which was consistent with the observed tegumental alterations. Detachment of the germinal layer was observed in 50 ± 10% of cysts treated with 50 µg/mL of CBD during 24 h. In the clinical efficacy study, all treatments reduced the weight of cysts recovered from mice compared with the control group. However, this reduction was only significant with ABZ suspension and the CBD + ABZ combination. As we could observe by the SEM study, the co-administration of CBD with ABZ suspension caused greater ultrastructural alteration of the germinal layer in comparison with that provoked with the monotherapy. Further in vivo research will be conducted by changing the dose and frequency of CBD and CBD + ABZ treatments and new available CBD delivery systems will also be assayed to improve bioavailability in vivo.
RESUMEN
Alveolar echinococcosis is a helminthic zoonosis caused by the larval stage of Echinococcus multilocularis. When surgical resection of the parasite is not feasible, pharmacological treatment with albendazole is the only option. Due to the difficulties in achieving the success of treatment, it is necessary to find new drugs to improve the treatment of this disease. In the present work, the efficacy of carvacrol alone or combined with albendazole was evaluated against E. multilocularis metacestodes. The association of carvacrol with albendazole produced a greater in vitro effect than the compounds incubated separately. The most effective treatment was the combination of 10 µg/ml of carvacrol and 1 µg/ml of albendazole. In the clinical efficacy study, treatment of infected mice with carvacrol (40 mg/kg) and albendazole (25 mg/kg) reduced the weight of metacestodes by 29 % and 50 %, respectively; while the combination of drugs had an efficacy of 83 %. These results coincided with the tissue damage observed at the ultrastructural level. In conclusion, carvacrol and albendazole combination enhanced the efficacy of monotherapy. This strategy would allow to improve the efficacy of the treatment without increasing the doses of albendazole or lengthen the treatment period, reducing the occurrence of adverse effects.
Asunto(s)
Antihelmínticos , Equinococosis , Echinococcus multilocularis , Albendazol/uso terapéutico , Animales , Antihelmínticos/uso terapéutico , Cimenos , Equinococosis/tratamiento farmacológico , RatonesRESUMEN
Alveolar echinococcosis is a neglected parasitic zoonosis caused by Echinococcus multilocularis. The pharmacological treatment is based on albendazole (ABZ). However, the low water solubility of the drug produces a limited dissolution rate, with the consequent failure in the treatment of the disease. Solid dispersions are a successful pharmacotechnical strategy to improve the dissolution profile of poorly water-soluble drugs. The aim of this work was to determine the in vivo efficacy of ABZ solid dispersions using poloxamer 407 as a carrier (ABZ:P407 solid dispersions (SDs)) in the murine intraperitoneal infection model for secondary alveolar echinococcosis. In the chemoprophylactic efficacy study, the ABZ suspension, the ABZ:P407 SDs and the physical mixture of ABZ and poloxamer 407 showed a tendency to decrease the development of murine cysts, causing damage to the germinal layer. In the clinical efficacy study, the ABZ:P407 SDs produced a significant decrease in the weight of murine cysts. In addition, the SDs produced extensive damage to the germinal layer. The increase in the efficacy of ABZ could be due to the improvement of water solubility and wettability of the drug due to the surfactant nature of poloxamer 407. In conclusion, this study is the basis for further research. This pharmacotechnical strategy might in the future offer novel treatment alternatives for human alveolar echinococcosis.
Asunto(s)
Albendazol/farmacología , Antiprotozoarios/farmacología , Portadores de Fármacos/farmacología , Equinococosis/prevención & control , Echinococcus multilocularis/efectos de los fármacos , Poloxámero/farmacología , Animales , Femenino , RatonesRESUMEN
Human alveolar echinococcosis (AE) is caused by the fox tapeworm Echinococcus multilocularis and is usually lethal if left untreated. The current strategy for treating human AE is surgical resection of the parasite mass complemented by chemotherapy with benzimidazole compounds. However, reliable chemotherapeutic alternatives have not yet been developed stimulating the research of new treatment strategies such as the use of medicinal plants. The aim of the current study was to investigate the efficacy of the combination albendazole (ABZ)+thymol on mice infected with E. multilocularis metacestodes. For this purpose, mice infected with parasite material were treated daily for 20 days with ABZ (5 mg/kg), thymol (40 mg/kg) or ABZ (5 mg/kg)+thymol (40 mg/kg) or left untreated as controls. After mice were euthanized, cysts were removed from the peritoneal cavity and the treatment efficacy was evaluated by the mean cysts weight, viability of protoscoleces and ultrastructural changes of cysts and protoscoleces. The application of thymol or the combination of ABZ+thymol resulted in a significant reduction of the cysts weight compared to untreated mice. We also found that although ABZ and thymol had a scolicidal effect, the combination of the two compounds had a considerably stronger effect showing a reduction in the protoscoleces viability of 62%. These results were also corroborated by optical microscopy, SEM and TEM. Protoscoleces recovered from ABZ or thymol treated mice showed alterations as contraction of the soma region, rostellar disorganization and presence of blebs in the tegument. However both drugs when combined lead to a total loss of the typical morphology of protoscoleces. All cysts removed from control mice appeared intact and no change in ultrastructure was detected. In contrast, cysts developed in mice treated with ABZ revealed changes in the germinal layer as reduction in cell number, while the treatment with thymol or the ABZ+thymol combination predominantly showed presence of cell debris. On the other hand, no differences were found in alkaline phosphatase (AP), glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) activities between control and treated mice, indicating the lack of toxicity of the different drug treatments during the experiment. Because combined ABZ+thymol treatment exhibited higher treatment efficiency compared with the drugs applied separately against murine experimental alveolar echinococcosis, we propose it would be a useful option for the treatment of human AE.