Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stat Methods Med Res ; 32(8): 1576-1587, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37338976

RESUMEN

Unmeasured confounding is a well-known obstacle in causal inference. In recent years, negative controls have received increasing attention as a important tool to address concerns about the problem. The literature on the topic has expanded rapidly and several authors have advocated the more routine use of negative controls in epidemiological practice. In this article, we review concepts and methodologies based on negative controls for detection and correction of unmeasured confounding bias. We argue that negative controls may lack both specificity and sensitivity to detect unmeasured confounding and that proving the null hypothesis of a null negative control association is impossible. We focus our discussion on the control outcome calibration approach, the difference-in-difference approach, and the double-negative control approach as methods for confounding correction. For each of these methods, we highlight their assumptions and illustrate the potential impact of violations thereof. Given the potentially large impact of assumption violations, it may sometimes be desirable to replace strong conditions for exact identification with weaker, easily verifiable conditions, even when these imply at most partial identification of unmeasured confounding. Future research in this area may broaden the applicability of negative controls and in turn make them better suited for routine use in epidemiological practice. At present, however, the applicability of negative controls should be carefully judged on a case-by-case basis.


Asunto(s)
Factores de Confusión Epidemiológicos , Sesgo , Causalidad
2.
Stat Methods Med Res ; 30(2): 473-487, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32998668

RESUMEN

Joint misclassification of exposure and outcome variables can lead to considerable bias in epidemiological studies of causal exposure-outcome effects. In this paper, we present a new maximum likelihood based estimator for marginal causal effects that simultaneously adjusts for confounding and several forms of joint misclassification of the exposure and outcome variables. The proposed method relies on validation data for the construction of weights that account for both sources of bias. The weighting estimator, which is an extension of the outcome misclassification weighting estimator proposed by Gravel and Platt (Weighted estimation for confounded binary outcomes subject to misclassification. Stat Med 2018; 37: 425-436), is applied to reinfarction data. Simulation studies were carried out to study its finite sample properties and compare it with methods that do not account for confounding or misclassification. The new estimator showed favourable large sample properties in the simulations. Further research is needed to study the sensitivity of the proposed method and that of alternatives to violations of their assumptions. The implementation of the estimator is facilitated by a new R function (ipwm) in an existing R package (mecor).


Asunto(s)
Modelos Estadísticos , Sesgo , Causalidad , Simulación por Computador , Funciones de Verosimilitud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA