Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Lancet Infect Dis ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39134085

RESUMEN

BACKGROUND: The rate of antibiotic resistance continues to grow, outpacing small-molecule-drug development efforts. Novel therapies are needed to combat this growing threat, particularly for the treatment of urinary tract infections (UTIs), which are one of the largest contributors to antibiotic use and associated antibiotic resistance. LBP-EC01 is a novel, genetically enhanced, six-bacteriophage cocktail developed by Locus Biosciences (Morrisville, NC, USA) to address UTIs caused by Escherichia coli, regardless of antibiotic resistance status. In this first part of the two-part phase 2 ELIMINATE trial, we aimed to define a dosing regimen of LBP-EC01 for the treatment of uncomplicated UTIs that could advance to the second, randomised, controlled, double-blinded portion of the study. METHODS: This first part of ELIMINATE is a randomised, uncontrolled, open-label, phase 2 trial that took place in six private clinical sites in the USA. Eligible participants were female by self-identification, aged between 18 years and 70 years, and had an uncomplicated UTI at the time of enrolment, as well as a history of at least one drug-resistant UTI caused by E coli within the 12 months before enrolment. Participants were initially randomised in a 1:1:1 ratio into three treatment groups, but this part of the trial was terminated on the recommendation of the safety review committee after a non-serious tolerability signal was observed based on systemic drug exposure. A protocol update was then implemented, comprised of three new treatment groups. Groups A to C were dosed with intraurethral 2 × 1012 plaque-forming units (PFU) of LBP-EC01 on days 1 and 2 by catheter, plus one of three intravenous doses daily on days 1-3 of LBP-EC01 (1 mL of 1 × 1010 PFU intravenous bolus in group A, 1 mL of 1 × 109 PFU intravenous bolus in group B, and a 2 h 1 × 1011 PFU intravenous infusion in 100 mL of sodium lactate solution in group C). In all groups, oral trimethoprim-sulfamethoxazole (TMP-SMX; 160 mg and 800 mg) was given twice daily on days 1-3. The primary outcome was the level of LBP-EC01 in urine and blood across the treatment period and over 48 h after the last dose and was assessed in patients in the intention-to-treat (ITT) population who received at least one dose of LBP-EC01 and had concentration-time data available throughout the days 1-3 dosing period (pharmacokinetic population). Safety, a secondary endpoint, was assessed in enrolled patients who received at least one dose of study drug (safety population). As exploratory pharmacodynamic endpoints, we assessed E coli levels in urine and clinical symptoms of UTI in patients with at least 1·0 × 105 colony-forming units per mL E coli in urine at baseline who took at least one dose of study drug and completed their day 10 test-of-cure assessment (pharmacodynamic-evaluable population). This trial is registered with ClinicalTrials.gov, NCT05488340, and is ongoing. FINDINGS: Between Aug 22, 2022, and Aug 28, 2023, 44 patients were screened for eligibility, and 39 were randomly assigned (ITT population). Initially, eight participants were assigned to the first three groups. After the protocol was updated, 31 participants were allocated into groups A (11 patients), B (ten patients), and C (ten patients). One patient in group C withdrew consent on day 2 for personal reasons, but as she had received the first dose of the study drug was included in the modified ITT population. Maximum urine drug concentrations were consistent across intraurethral dosing, with a maximum mean concentration of 6·3 × 108 PFU per mL (geometric mean 8·8 log10 PFU per mL and geometric SD [gSD] 0·3). Blood plasma level of bacteriophages was intravenous dose-dependent, with maximum mean concentrations of 4·0 × 103 (geometric mean 3·6 log10 PFU per mL [gSD 1·5]) in group A, 2·5 × 103 (3·4 log10 PFU per mL [1·7]) in group B, and 8·0 × 105 (5·9 log10 PFU per mL [1·4]) in group C. No serious adverse events were observed. 44 adverse events were reported across 18 (46%) of the 39 participants in the safety population, with more adverse events seen with higher intravenous doses. Three patients in groups 1 to 3 and one patient in group C, all of whom received 1 × 1011 LBP-EC01 intravenously, had non-serious tachycardia and afebrile chills after the second intravenous dose. A rapid reduction of E coli in urine was observed by 4 h after the first treatment and maintained at day 10 in all 16 evaluable patients; these individuals had complete resolution of UTI symptoms by day 10. INTERPRETATION: A regimen consisting of 2 days of intraurethral LBP-EC01 and 3 days of concurrent intravenous LBP-EC01 (1 × 1010 PFU) and oral TMP-SMX twice a day was well tolerated, with consistent pharmacokinetic profiles in urine and blood. LBP-EC01 and TMP-SMX dosing resulted in a rapid and durable reduction of E coli, with corresponding elimination of clinical symptoms in evaluable patients. LBP-EC01 holds promise in providing an alternative therapy for uncomplicated UTIs, with further testing of the group A dosing regimen planned in the controlled, double-blind, second part of ELIMINATE. FUNDING: Federal funds from the US Department of Health and Human Services, Administration for Strategic Preparedness and Response, and Biomedical Advanced Research and Development Authority (BARDA).

2.
Genes (Basel) ; 10(2)2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30700014

RESUMEN

Chromatin structure and its organization contributes to the proper regulation and timing of DNA replication. Yet, the precise mechanism by which chromatin contributes to DNA replication remains incompletely understood. This is particularly true for cell types that rely on polyploidization as a developmental strategy for growth and high biosynthetic capacity. During Drosophila larval development, cells of the salivary gland undergo endoreplication, repetitive rounds of DNA synthesis without intervening cell division, resulting in ploidy values of ~1350C. S phase of these endocycles displays a reproducible pattern of early and late replicating regions of the genome resulting from the activity of the same replication initiation factors that are used in diploid cells. However, unlike diploid cells, the latest replicating regions of polyploid salivary gland genomes, composed primarily of pericentric heterochromatic enriched in H3K9 methylation, are not replicated each endocycle, resulting in under-replicated domains with reduced ploidy. Here, we employ a histone gene replacement strategy in Drosophila to demonstrate that mutation of a histone residue important for heterochromatin organization and function (H3K9) but not mutation of a histone residue important for euchromatin function (H4K16), disrupts proper endoreplication in Drosophila salivary gland polyploid genomes thereby leading to DNA copy gain in pericentric heterochromatin. These findings reveal that H3K9 is necessary for normal levels of under-replication of pericentric heterochromatin and suggest that under-replication at pericentric heterochromatin is mediated through H3K9 methylation.


Asunto(s)
Replicación del ADN , Heterocromatina/genética , Histonas/metabolismo , Cromosomas Politénicos/genética , Animales , Centrómero/genética , Drosophila melanogaster , Metilación , Procesamiento Proteico-Postraduccional , Glándulas Salivales/metabolismo
3.
Genome Res ; 28(11): 1688-1700, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30279224

RESUMEN

Chromatin structure has emerged as a key contributor to spatial and temporal control over the initiation of DNA replication. However, despite genome-wide correlations between early replication of gene-rich, accessible euchromatin and late replication of gene-poor, inaccessible heterochromatin, a causal relationship between chromatin structure and replication initiation remains elusive. Here, we combined histone gene engineering and whole-genome sequencing in Drosophila to determine how perturbing chromatin structure affects replication initiation. We found that most pericentric heterochromatin remains late replicating in H3K9R mutants, even though H3K9R pericentric heterochromatin is depleted of HP1a, more accessible, and transcriptionally active. These data indicate that HP1a loss, increased chromatin accessibility, and elevated transcription do not result in early replication of heterochromatin. Nevertheless, a small amount of pericentric heterochromatin with increased accessibility replicates earlier in H3K9R mutants. Transcription is de-repressed in these regions of advanced replication but not in those regions of the H3K9R mutant genome that replicate later, suggesting that transcriptional repression may contribute to late replication. We also explored relationships among chromatin, transcription, and replication in euchromatin by analyzing H4K16R mutants. In Drosophila, the X Chromosome gene expression is up-regulated twofold and replicates earlier in XY males than it does in XX females. We found that H4K16R mutation prevents normal male development and abrogates hyperexpression and earlier replication of the male X, consistent with previously established genome-wide correlations between transcription and early replication. In contrast, H4K16R females are viable and fertile, indicating that H4K16 modification is dispensable for genome replication and gene expression.


Asunto(s)
Ensamble y Desensamble de Cromatina , Momento de Replicación del ADN , Animales , Cromosomas de Insectos/genética , Drosophila , Femenino , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Mutación , Activación Transcripcional , Cromosoma X/genética
4.
Methods Mol Biol ; 1832: 309-325, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30073535

RESUMEN

Histone post-translational modifications (PTMs) are thought to participate in a range of essential molecular and cellular processes, including gene expression, replication, and nuclear organization. Importantly, histone PTMs are also thought to be prime candidates for carriers of epigenetic information across cell cycles and generations. However, directly testing the necessity of histone PTMs themselves in these processes by mutagenesis has been extremely difficult to carry out because of the highly repetitive nature of histone genes in animal genomes. We developed a transgenic system to generate Drosophila melanogaster genotypes in which the entire complement of replication-dependent histone genes is mutant at a residue of interest. We built a BAC vector containing a visible marker for lineage tracking along with the capacity to clone large (60-100 kb) inserts that subsequently can be site-specifically integrated into the D. melanogaster genome. We demonstrate that artificial tandem arrays of the core 5 kb replication-dependent histone repeat can be generated with relative ease. This genetic platform represents the first histone replacement system to leverage a single tandem transgenic insertion for facile genetics and analysis of molecular and cellular phenotypes. We demonstrate the utility of our system for directly preventing histone residues from being modified, and studying the consequent phenotypes. This system can be generalized to the cloning and transgenic insertion of any tandemly repeated sequence of biological interest.


Asunto(s)
Clonación Molecular/métodos , Drosophila melanogaster/genética , Técnicas de Transferencia de Gen , Histonas/genética , Familia de Multigenes , Secuencias Repetidas en Tándem/genética , Animales , Cromosomas Artificiales Bacterianos/genética , Drosophila melanogaster/embriología , Femenino , Genoma de los Insectos , Masculino , Modelos Animales , Reproducibilidad de los Resultados , Transgenes
5.
Genetics ; 208(1): 229-244, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29133298

RESUMEN

Histone post-translational modifications (PTMs) and differential incorporation of variant and canonical histones into chromatin are central modes of epigenetic regulation. Despite similar protein sequences, histone variants are enriched for different suites of PTMs compared to their canonical counterparts. For example, variant histone H3.3 occurs primarily in transcribed regions and is enriched for "active" histone PTMs like Lys9 acetylation (H3.3K9ac), whereas the canonical histone H3 is enriched for Lys9 methylation (H3K9me), which is found in transcriptionally silent heterochromatin. To determine the functions of K9 modification on variant vs. canonical H3, we compared the phenotypes caused by engineering H3.3K9R and H3K9R mutant genotypes in Drosophila melanogaster Whereas most H3.3K9R , and a small number of H3K9R , mutant animals are capable of completing development and do not have substantially altered protein-coding transcriptomes, all H3.3K9R H3K9R combined mutants die soon after embryogenesis and display decreased expression of genes enriched for K9ac. These data suggest that the role of K9ac in gene activation during development can be provided by either H3 or H3.3. Conversely, we found that H3.3K9 is methylated at telomeric transposons and that this mark contributes to repressive chromatin architecture, supporting a role for H3.3 in heterochromatin that is distinct from that of H3. Thus, our genetic and molecular analyses demonstrate that K9 modification of variant and canonical H3 have overlapping roles in development and transcriptional regulation, though to differing extents in euchromatin and heterochromatin.


Asunto(s)
Drosophila/genética , Drosophila/metabolismo , Variación Genética , Histonas/genética , Histonas/metabolismo , Lisina/genética , Lisina/metabolismo , Alelos , Animales , Animales Modificados Genéticamente , Genotipo , Heterocromatina , Histonas/química , Lisina/química , Mutación , Fenotipo , Transcripción Genética
6.
Genes Dev ; 30(16): 1866-80, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27566777

RESUMEN

A defining feature of heterochromatin is methylation of Lys9 of histone H3 (H3K9me), a binding site for heterochromatin protein 1 (HP1). Although H3K9 methyltransferases and HP1 are necessary for proper heterochromatin structure, the specific contribution of H3K9 to heterochromatin function and animal development is unknown. Using our recently developed platform to engineer histone genes in Drosophila, we generated H3K9R mutant flies, separating the functions of H3K9 and nonhistone substrates of H3K9 methyltransferases. Nucleosome occupancy and HP1a binding at pericentromeric heterochromatin are markedly decreased in H3K9R mutants. Despite these changes in chromosome architecture, a small percentage of H3K9R mutants complete development. Consistent with this result, expression of most protein-coding genes, including those within heterochromatin, is similar between H3K9R and controls. In contrast, H3K9R mutants exhibit increased open chromatin and transcription from piRNA clusters and transposons, resulting in transposon mobilization. Hence, transposon silencing is a major developmental function of H3K9.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Animales , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/química , Cromosomas/genética , Elementos Transponibles de ADN/genética , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Mutación , Nucleosomas/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética
7.
Dev Cell ; 32(3): 373-86, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25669886

RESUMEN

Histones and their posttranslational modifications influence the regulation of many DNA-dependent processes. Although an essential role for histone-modifying enzymes in these processes is well established, defining the specific contribution of individual histone residues remains a challenge because many histone-modifying enzymes have nonhistone targets. This challenge is exacerbated by the paucity of suitable approaches to genetically engineer histone genes in metazoans. Here, we describe a platform in Drosophila for generating and analyzing any desired histone genotype, and we use it to test the in vivo function of three histone residues. We demonstrate that H4K20 is neither essential for DNA replication nor for completion of development, unlike inferences drawn from analyses of H4K20 methyltransferases. We also show that H3K36 is required for viability and H3K27 is essential for maintenance of cellular identity but not for gene activation. These findings highlight the power of engineering histones to interrogate genome structure and function in animals.


Asunto(s)
Cromatina/genética , Histonas/metabolismo , Familia de Multigenes/genética , Procesamiento Proteico-Postraduccional/fisiología , Animales , Replicación del ADN/genética , Drosophila , Epigénesis Genética/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Metilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA