Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 356: 120679, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531141

RESUMEN

Introduction of alpine grasses to low altitude regions has long been a crucial strategy for enriching germplasm diversity, cultivating and acclimating high-quality species, enhancing ecosystem resilience and adaptability, as well as facilitating ecosystem restoration. However, there is an urgent need to investigate the impacts of planting Gramineae seeds on greenhouse gas (GHG) emissions, particularly during the critical stage of early plant growth. In this study, four species of grass seeds (Stipa breviflora, Poa pratensis, Achnatherum splendens, Elymus nutans) were collected from 19 high-altitude regions surrounding the Qinghai-Tibet Plateau and sown at low-altitude. Measurements of GHG emissions at early seedling growth in the mesocosm experiment using static chamber method showed a strong increase in the cumulative emissions of CO2 (5.71%-9.19%) and N2O (11.36%-13.64%) (p < 0.05), as well as an elevated CH4 uptake (2.75%-5.50%) in sites where the four grass species were introduced, compared to bare soil. Consequently, there was a substantial rise in global warming potential (13.87%-16.33%) (p < 0.05) at grass-introduced sites. Redundancy analysis showed that seed traits, plant biomass, and seedling emergence percentage were the main driving biotic factors of three GHGs fluxes. Our study unveils the potential risk of escalating GHG emissions induced by introducing high altitude grasses to low altitude bare soil, elucidating the mechanism through linking seed traits with seedling establishment and environmental feedback. Furthermore, this offers a new perspective for assessing the impact of grass introduction on ecological environment of introduced site.


Asunto(s)
Calentamiento Global , Gases de Efecto Invernadero , Ecosistema , Plantones/química , Poaceae , Altitud , Suelo , Metano/análisis , Óxido Nitroso/análisis , Dióxido de Carbono/análisis
2.
Sci Total Environ ; 922: 171171, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38402971

RESUMEN

The relationship between plant diversity and the ecosystem carbon pool is important for understanding the role of biodiversity in regulating ecosystem functions. However, it is not clear how the relationship between plant diversity and soil carbon content changes under different grassland use patterns. In a 3-year study from 2013 to 2015, we investigated plant diversity and soil total carbon (TC) content of grasslands in northern China under different grassland utilization methods (grazing, mowing, and enclosure) and climatic conditions. Shannon-Wiener and Species richness index of grassland were significantly decreased by grazing and mowing. Plant diversity was positively correlated with annual precipitation (AP) and negatively correlated with annual mean temperature (AMT). AP was the primary regulator of plant diversity. Grazing and mowing decreased TC levels in grasslands compared with enclosures, especially in topsoil (0-20 cm). The average TC content was decreased by 58 % and 36 % in the 0-10 cm soil layer, while it was decreased by 68 % and 39 % in 10-20 cm soil layer. TC was positively correlated with AP and negatively correlated with AMT. Principal component analysis (PCA) showed that plant diversity was positively correlated with soil TC, and the correlation decreased with an increase in the soil depth. Overall, this study provides a theoretical basis for predicting soil carbon storage in grasslands under human disturbances and climate change impacts.


Asunto(s)
Ecosistema , Pradera , Humanos , Biomasa , Suelo , China , Plantas , Carbono/análisis
3.
J Environ Manage ; 348: 119184, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37832291

RESUMEN

Grazing and climate change both contribute to diversity loss and productivity fluctuations. Sensitive climate conditions and long-term grazing activities have a profound influence on community change, particularly in high-altitude mountain grassland ecosystems. However, knowledge about the role of long-term continuous grazing management on diversity, productivity and the regulation mechanisms in fragile grassland ecosystems is still rudimentary. We conducted a long-term grazing experiment on an alpine typical steppe in the Qilian Mountains to assess effects of grazing intensity on soil, diversity, productivity and the regulation mechanisms. Plants and soil were sampled along grazing gradients at different distances from the pasture entrance (0, 0.3, 0.6, 0.9, 1.2 and 1.5 km) under the non-growing (WP) and the growing season grazing pasture (SAP). The results revealed that community diversity and biomass did not change significantly on a time scale, while the concentration of soil organic carbon and total phosphorus increased significantly. Heavy grazing (0-0.3 km) decreased community diversity and biomass. Grazing increased soil chemical properties in heavy grazed areas of WP, while the opposite was recorded in SAP. Soil chemical properties explained the largest variances in community diversity and community biomass. The prediction model indicates that grazing in WP mainly affects community diversity through soil chemical properties, and promotes a positive correlation between community diversity and community biomass; in SAP, the direct effect of grazing gradients on community diversity and biomass is the main pathway, but not eliminating the single positive relationship between diversity and biomass, which means that diversity can still be used as a potential resource to promote productivity improvement. Therefore, we should focus on the regulation of soil chemical properties in WP, such as the health and quality of soil, strengthening its ability to store water, sequester carbon and increase nutrients; focus on the management of livestock in SAP, including providing fertilizer and sowing to increase diversity and production in heavily grazed regions and reducing grazing pressure through regional rotational grazing. Ultimately, we call for strengthening the stability and sustainability of ecosystems through targeted and active human intervention in ecologically sensitive areas to cope with future grazing pressures and climate disturbances.


Asunto(s)
Ecosistema , Pradera , Humanos , Suelo/química , Carbono , Biomasa
4.
Asian-Australas J Anim Sci ; 33(1): 44-52, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31010963

RESUMEN

Objective: Minerals are one of the important nutrients for supporting the growth of sheep grazing in the highland, northeast of China. The experiment was conducted to investigate the relationship of both macro and micro minerals in sheep grazing in the highlands of six districts located in the Qilian Mountain of China. Methods: Samples of herbage (n=240) and soil (n=240) were collected at random in a "W" shape across the area designated for harvesting from 24 farms, where the sheep commonly graze in October (winter) for mineral analyses. In addition, serum samples were taken via jugular vein from 20 sheep per farm from 24 farms (n=480 samples in total) for serum minerals analyses. Mean values of macro and micro minerals were statistically compared among districts and the correlations among soil-plant-animal were statistically analyzed and correlations were regressed, as well. Results: The results revealed that there were variations for both macro and micro minerals among districts. Statistical analysis of the correlation coefficients between herbage and sheep were significantly different for most of the minerals but not for P, Cu, and Se. Many correlation regression coefficients were found significantly different among minerals of herbage, soil, and sheep serum especially those of K, Na, Fe, Mn, and Zn (between herbage and sheep serum), and Fe and Mn (between herbage and soil), Na, Fe, Mn, and Zn (between soil and sheep serum), respectively. The regression coefficient equations derived under this experiment for prediction of Ca (R2=0.618), K (R2=0.803), Mg (R2=0.767), Na (R2=0.670), Fe (R2=0.865), Zn (R2=0.950), Mn (R2=0.936), and Se (R2=0.630), resulted in significant R2 values. Conclusion: It is inferred that the winter herbage minerals in all the districts were below the recommended levels for macro minerals which indicated there would be some mineral deficiencies in sheep grazing the herbage in these regions. Supplemental minerals may therefore play an important role in balancing the minerals available from the herbage in winter and would lead to increased productivity in sheep on the highland areas of China. These findings could be potentially applied to the other regions for improving the livestock productivity.

5.
Am Nat ; 185(5): 620-30, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25905505

RESUMEN

Demographic equivalence is the central assumption of the neutral theory of species diversity and has attracted much criticism, since species clearly differ from each other in many traits. Two simple answers--that is, dispersal limitation and demographic trade-offs--have been suggested to resolve this problem. Both processes are considered to be capable of making interspecific differences in fitness smaller on their own, thus potentially reconciling neutrality with reality. However, when the two mechanisms operate simultaneously, as they must do in natural communities, we are surprised to find that they interfere with each other in such a way that dispersal limitation favors more fecund species. Fitness equivalence is no longer guaranteed by a perfect trade-off, and contrary to popular belief, dispersal limitation is found to impede rather than facilitate the stochastic coexistence of species. Still, more species can coexist than allowed through demographic equivalence, providing a potentially alternative explanation for biodiversity maintenance in nature.


Asunto(s)
Distribución Animal , Biodiversidad , Fertilidad , Aptitud Genética , Fenómenos Ecológicos y Ambientales , Modelos Biológicos
6.
Ecol Evol ; 4(21): 4041-52, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25505532

RESUMEN

Despite centuries of interest in species range limits, few studies have taken a whole community into consideration. Actually, multiple species may simultaneously respond to environmental changes, for example, global warming, leading a series of dynamical communities toward the advancing front. We investigated multiple species range expansions through the analysis of a two-species dispersion model and simulations of multiple species assemblages regulated by neutral and fecundity-survival trade-offs (FSTs), respectively, and found that species assemblages regulated by different mechanisms would initiate different expanding patterns in geographic ranges in response to environmental changes. The neutral model generally predicts a higher biodiversity near the core of an expanding range, and a lower community similarity compared with a FST model. Without considering the evolution of life history traits, an assortment of the reproduction ability happens at the advancing front under FSTs at the expense of a higher death rate or lower competitive ability. These results emphasize the importance of community assembly rules to the biodiversity maintenance of range expanding communities.

7.
PLoS One ; 7(11): e49024, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23152845

RESUMEN

The relationship between species richness and evenness across communities remains an unsettled issue in ecology from both theoretical and empirical perspectives. As a result, we do not know the mechanisms that could generate a relationship between species richness and evenness, and how this responds to spatial scale. Here we examine the relationship between species richness(S) and evenness (Pielou's J' evenness) using a chronosequence of successional sub-alpine meadow communities in the eastern Qinghai-Tibetan Plateau. These meadows range from natural community (never farmed), to those that have been protected from agricultural exploitation for periods ranging from 1 to 10 years. A total of 30 sampling quadrats with size of 0.5 m×0.5 m were laid out along two transects at each meadow. Using correlation analyses we found a consistent negative correlation between S and J' in these communities along the successional gradient at the sampling scale of 0.5 m×0.5 m. We also explored the relationship between S and J' at different sampling scales (from 0.5 m×0.5 m to10 m×10 m) using properly measured ramet-mapped data of a10 m×10 m quadrat in the natural community. We found that S was negatively corrected with J' at the scales of 0.5 m×0.5 m to 2 m×2 m, but such a relationships disappeared at relative larger scales (≥2 m×4 m). When fitting different species abundance models combined with trait-specific methods, we found that niche preemption may be the determining mechanism of species evenness along the succession gradient. Considering all results together, we can conclude that such niche differentiation and spatial scale effects may help to explain the maintenance of high species richness in sub-alpine meadow communities.


Asunto(s)
Biodiversidad , Fenómenos Fisiológicos de las Plantas , China , Modelos Biológicos , Hojas de la Planta/anatomía & histología , Dinámica Poblacional , Especificidad de la Especie , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA