Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 21(27): 5560-5566, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37345756

RESUMEN

Mercury is a highly toxic heavy metal and it poses a serious threat to the natural environment and human health. Thus, selective detection of trace mercury (e.g. inorganic mercury and methylmercury) in the environment is critical yet challenging. Herein, we describe the rational design and facile synthesis of a new triphenylamine-based phenylboronic acid fluorescent probe (TPA-PBA) for selective detection of Hg2+ and CH3Hg+. Due to the inherent specificity of the displacement reaction between phenylboronic acid and mercury, this probe exhibits exceptionally high selectivity towards Hg2+/CH3Hg+ against other tested ions with ppb-level sensitivity. More importantly, the probe TPA-PBA is effective and selective in detecting Hg2+/CH3Hg+ in tap water and real-world groundwater, indicating its potential practical applications in in situ and online mercury detection in real-world scenarios. With TPA-PBA based test strips Hg2+ can be distinguished from CH3Hg+ by the naked eye. This study could accelerate the development of low-cost, highly efficient and selective fluorescent probes for rapid trace mercury detection.

2.
Chem Sci ; 12(35): 11647-11651, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34659699

RESUMEN

Crystalline supramolecular architectures mediated by cations, anions, ion pairs or neutral guest species are well established. However, the robust crystallization of a well-designed receptor mediated by labile anionic solvate clusters remains unexplored. Herein, we describe the synthesis and crystalline behaviors of a trimacrocyclic hexasubstituted benzene 2 in the presence of guanidium halide salts and chloroform. Halide hexasolvate clusters, viz. [Cl(CHCl3)6]-, [Br(CHCl3)6]-, and [I(CHCl3)6]-, were found to be critical to the crystallization process, as suggested by the single-crystal structures, X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and NMR spectroscopy. This study demonstrates the hitherto unexpected role that labile ionic solvate clusters can play in stabilizing supramolecular architectures.

3.
Angew Chem Int Ed Engl ; 60(47): 24770-24798, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34165884

RESUMEN

Redox flow batteries (RFBs) are among the most promising grid-scale energy storage technologies. However, the development of RFBs with high round-trip efficiency, high rate capability, and long cycle life for practical applications is highly restricted by the lack of appropriate ion-conducting membranes. Promising RFB membranes should separate positive and negative species completely and conduct balancing ions smoothly. Specific systems must meet additional requirements, such as high chemical stability in corrosive electrolytes, good resistance to organic solvents in nonaqueous systems, and excellent mechanical strength and flexibility. These rigorous requirements put high demands on the membrane design, essentially the chemistry and microstructure associated with ion transport channels. In this Review, we summarize the design rationale of recently reported RFB membranes at the molecular level, with an emphasis on new chemistry, novel microstructures, and innovative fabrication strategies. Future challenges and potential research opportunities within this field are also discussed.

4.
Org Lett ; 23(7): 2638-2642, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33733784

RESUMEN

Calix[4]pyrrole 1 can form host-guest complexes with certain thallium salts, for example, TlF, not only in the gas phase but also in solution and in the solid state. The complexation of TlF by calix[4]pyrrole 1 was found to promote self-assembly and the formation of well-defined and highly ordered fibrous supramolecular morphologies, as revealed by polarizing microscopy and scanning electron microscopy. The findings reported here serve to broaden the scope of cationic substrates that may be complexed as ion pairs by calix[4]pyrrole receptors while setting the stage for the development of new hosts for thallium(I) salts.

5.
Chem Soc Rev ; 49(3): 865-907, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31957756

RESUMEN

Supramolecular chemistry is a central topic in modern chemistry. It touches on many traditional disciplines, such as organic chemistry, inorganic chemistry, physical chemistry, materials chemistry, environmental chemistry, and biological chemistry. Supramolecular hosts, inter alia macrocyclic hosts, play critical roles in supramolecular chemistry. Calix[4]pyrroles, non-aromatic tetrapyrrolic macrocycles defined by sp3 hybridized meso bridges, have proved to be versatile receptors for neutral species, anions, and cations, as well as ion pairs. Compared to the parent system, octamethylcalix[4]pyrrole and its derivatives bearing simple appended functionalities, strapped calix[4]pyrroles typically display enhanced binding affinities and selectivities. In this review, we summarize advances in the design and synthesis of strapped calix[4]pyrroles, as well as their broad utility in molecular recognition, supramolecular extraction, separation technology, ion transport, and as agents capable of inhibiting cancer cell proliferation. Future challenges within this sub-field are also discussed.


Asunto(s)
Calixarenos/química , Calixarenos/metabolismo , Porfirinas/química , Porfirinas/metabolismo , Aniones/química , Apoptosis , Cationes/química , Permeabilidad de la Membrana Celular , Cristalización , Modelos Moleculares , Estructura Molecular , Compuestos Orgánicos/química , Relación Estructura-Actividad , Termodinámica
6.
Adv Mater ; 31(24): e1901052, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30998269

RESUMEN

Redox-active organic materials have been considered as one of the most promising "green" candidates for aqueous redox flow batteries (RFBs) due to the natural abundance, structural diversity, and high tailorability. However, many reported organic molecules are employed in the anode, and molecules with highly reversible capacity for the cathode are limited. Here, a class of heteroaromatic phenothiazine derivatives is reported as promising positive materials for aqueous RFBs. Among these derivatives, methylene blue (MB) possesses high reversibility with extremely fast redox kinetics (electron-transfer rate constant of 0.32 cm s-1 ), excellent stability in both neutral and reduced states, and high solubility in an acetic-acid-water solvent, leading to a high reversible capacity of ≈71 Ah L-1 . Symmetric RFBs based on MB electrolyte demonstrate remarkable stability with no capacity decay over 1200 cycles. Even concentrated MB catholyte (1.5 m) is still able to deliver stable capacity over hundreds of cycles in a full cell system. The impressive cell performance validates the practicability of MB for large-scale electrical energy storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA