RESUMEN
During the COVID-19 outbreak, there was a sharp increase in generalized anxiety disorder (GAD). Acupuncture therapy has the advantages of accurate clinical efficacy, safety and reliability, few adverse reactions, and no dependence, and is gradually becoming one of the emerging therapies for treating GAD. We present a study protocol for a randomized clinical trial with the aim of exploring the mechanism of brain plasticity in patients with GAD and evaluate the effectiveness and reliability of acupuncture treatment. Transcranial magnetic stimulation (TMS) will be used to assess cortical excitability in GAD patients and healthy people. Sixty-six GAD patients meeting the inclusion criteria will be randomly divided into two groups: TA group, (treatment with acupuncture and basic western medicine treatment) and SA group (sham acupuncture and basic western medicine treatment). Twenty healthy people will be recruited as the control group (HC). The parameters that will be evaluated are amplitude of motor evoked potentials (MEPs), cortical resting period (CSP), resting motor threshold (RMT), and Hamilton Anxiety Scale (HAMA) score. Secondary results will include blood analysis of γ-aminobutyric acid (GABA), glutamate (Glu), glutamine (Gln), serotonin (5-HT), and brain-derived nerve growth factor (BDNF). Outcomes will be assessed at baseline and after the intervention (week 8). This study protocol is the first clinical trial designed to detect differences in cerebral cortical excitability between healthy subjects and patients with GAD, and the comparison of clinical efficacy and reliability before and after acupuncture intervention is also one of the main contents of the protocol. We hope to find a suitable non-pharmacological alternative treatment for patients with GAD.
Asunto(s)
Terapia por Acupuntura , Trastornos de Ansiedad , COVID-19 , Estimulación Magnética Transcraneal , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Terapia por Acupuntura/métodos , Trastornos de Ansiedad/terapia , COVID-19/terapia , Potenciales Evocados Motores/fisiología , Ensayos Clínicos Controlados Aleatorios como Asunto , Reproducibilidad de los Resultados , SARS-CoV-2 , Estimulación Magnética Transcraneal/métodos , Resultado del TratamientoRESUMEN
During the COVID-19 outbreak, there was a sharp increase in generalized anxiety disorder (GAD). Acupuncture therapy has the advantages of accurate clinical efficacy, safety and reliability, few adverse reactions, and no dependence, and is gradually becoming one of the emerging therapies for treating GAD. We present a study protocol for a randomized clinical trial with the aim of exploring the mechanism of brain plasticity in patients with GAD and evaluate the effectiveness and reliability of acupuncture treatment. Transcranial magnetic stimulation (TMS) will be used to assess cortical excitability in GAD patients and healthy people. Sixty-six GAD patients meeting the inclusion criteria will be randomly divided into two groups: TA group, (treatment with acupuncture and basic western medicine treatment) and SA group (sham acupuncture and basic western medicine treatment). Twenty healthy people will be recruited as the control group (HC). The parameters that will be evaluated are amplitude of motor evoked potentials (MEPs), cortical resting period (CSP), resting motor threshold (RMT), and Hamilton Anxiety Scale (HAMA) score. Secondary results will include blood analysis of γ-aminobutyric acid (GABA), glutamate (Glu), glutamine (Gln), serotonin (5-HT), and brain-derived nerve growth factor (BDNF). Outcomes will be assessed at baseline and after the intervention (week 8). This study protocol is the first clinical trial designed to detect differences in cerebral cortical excitability between healthy subjects and patients with GAD, and the comparison of clinical efficacy and reliability before and after acupuncture intervention is also one of the main contents of the protocol. We hope to find a suitable non-pharmacological alternative treatment for patients with GAD.
RESUMEN
Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in de novo guanine nucleotide biosynthesis. Its activity is negatively regulated by the binding of GTP. IMPDH can form a membraneless subcellular structure termed the cytoophidium in response to certain changes in the metabolic status of the cell. The polymeric form of IMPDH, which is the subunit of the cytoophidium, has been shown to be more resistant to the inhibition by GTP at physiological concentrations, implying a functional correlation between cytoophidium formation and the upregulation of GTP biosynthesis. Herein we demonstrate that zebrafish IMPDH1b and IMPDH2 isoforms can assemble abundant cytoophidium in most of cultured cells under stimuli, while zebrafish IMPDH1a shows distinctive properties of forming the cytoophidium in different cell types. Point mutations that disrupt cytoophidium structure in mammalian models also prevent the aggregation of zebrafish IMPDHs. In addition, we discover the presence of the IMPDH cytoophidium in various tissues of larval and adult fish under normal growth conditions. Our results reveal that polymerization and cytoophidium assembly of IMPDH can be a regulatory machinery conserved among vertebrates, and with specific physiological purposes.