Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Nat Methods ; 16(10): 1045-1053, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31562488

RESUMEN

Quantitative fluorescence and superresolution microscopy are often limited by insufficient data quality or artifacts. In this context, it is essential to have biologically relevant control samples to benchmark and optimize the quality of microscopes, labels and imaging conditions. Here, we exploit the stereotypic arrangement of proteins in the nuclear pore complex as in situ reference structures to characterize the performance of a variety of microscopy modalities. We created four genome edited cell lines in which we endogenously labeled the nucleoporin Nup96 with mEGFP, SNAP-tag, HaloTag or the photoconvertible fluorescent protein mMaple. We demonstrate their use (1) as three-dimensional resolution standards for calibration and quality control, (2) to quantify absolute labeling efficiencies and (3) as precise reference standards for molecular counting. These cell lines will enable the broader community to assess the quality of their microscopes and labels, and to perform quantitative, absolute measurements.


Asunto(s)
Microscopía Fluorescente/normas , Poro Nuclear , Línea Celular , Humanos , Microscopía Fluorescente/métodos , Estándares de Referencia
3.
Langmuir ; 33(44): 12569-12579, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29017327

RESUMEN

Insects and plants exhibit bactericidal behavior through nanostructures, which leads to physical contact killing that does not require antibiotics or chemicals. Also, certain metallic ions (e.g., Ag+ and Cu2+) are well-known to kill bacteria by disrupting their cellular functionalities. The aim of this study is to explore the improvement in bactericidal activity by combining extreme physical structure with surface chemistry. We have fabricated tall (8-9 µm high) nanostructures on silicon surfaces (NSS) having sharp tips (35-110 nm) using a single-step, maskless deep reactive ion etching technique inspired by dragonfly wing. Bactericidal efficacy of the nanostructured surfaces coated with a thin layer of silver (NSS_Ag) or copper (NSS_Cu) was measured quantitatively using standard viability plate-count method and flow cytometry. NSS_Cu surfaces kill bacteria very efficiently (killing 97% within 30 min) when compared to the uncoated NSS. This can be attributed to the addition of a surface chemistry to the nanostructures. The antibacterial activity of NSS_Cu is further indicated by the morphological differences of the dying/dead bacteria observed in the SEM images. The nanostructured surfaces demonstrate excellent superhydrophobic behavior, even with an ultrathin layer of metal (Ag/Cu) coating. The nanostructured surfaces exhibit static contact angle greater than 150° and contact hysteresis less than 10°. Moreover, reflectance is found to be <1% (for NSS_Cu < 0.5%) for all the nanostructured surfaces in the wavelength range 250-800 nm. The results obtained suggest that the fabricated nanostructured surfaces are multifunctional and can be used in various practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA