Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell ; 107(3): 361-72, 2001 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-11701126

RESUMEN

In vitro assembled yeast ribosome-nascent chain complexes (RNCs) containing a signal sequence in the nascent chain were immunopurified and reconstituted with the purified protein-conducting channel (PCC) of yeast endoplasmic reticulum, the Sec61 complex. A cryo-EM reconstruction of the RNC-Sec61 complex at 15.4 A resolution shows a tRNA in the P site. Distinct rRNA elements and proteins of the large ribosomal subunit form four connections with the PCC across a gap of about 10-20 A. Binding of the PCC influences the position of the highly dynamic rRNA expansion segment 27. The RNC-bound Sec61 complex has a compact appearance and was estimated to be a trimer. We propose a binary model of cotranslational translocation entailing only two basic functional states of the translating ribosome-channel complex.


Asunto(s)
Biosíntesis de Proteínas , ARN de Hongos/metabolismo , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/ultraestructura , Secuencia de Bases , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Hongos/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Cell ; 107(3): 373-86, 2001 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-11701127

RESUMEN

A cryo-EM reconstruction of the translating yeast 80S ribosome was analyzed. Computationally separated rRNA and protein densities were used for docking of appropriately modified rRNA models and homology models of yeast ribosomal proteins. The core of the ribosome shows a remarkable degree of conservation. However, some significant differences in functionally important regions and dramatic changes in the periphery due to expansion segments and additional ribosomal proteins are evident. As in the bacterial ribosome, bridges between the subunits are mainly formed by RNA contacts. Four new bridges are present at the periphery. The position of the P site tRNA coincides precisely with its prokaryotic counterpart, with mainly rRNA contributing to its molecular environment. This analysis presents an exhaustive inventory of an eukaryotic ribosome at the molecular level.


Asunto(s)
Conformación de Ácido Nucleico , ARN de Hongos/química , ARN de Transferencia/química , Ribosomas/ultraestructura , Secuencia de Bases , Sitios de Unión , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Datos de Secuencia Molecular , ARN , ARN de Hongos/metabolismo , ARN Ribosómico/química , ARN Ribosómico 18S/química , ARN Ribosómico 5.8S/química , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética
3.
J Struct Biol ; 133(2-3): 176-92, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11472089

RESUMEN

The extracellular giant hemoglobin from the earthworm Lumbricus terrestris was reconstructed at 14.9-A resolution from cryo-electron microscope images, using a new procedure for estimating parameters of the contrast transfer (CTF) function. In this approach, two important CTF parameters, defocus and amplitude contrast ratio, can be refined iteratively within the framework of 3D projection alignment procedure, using minimization of sign disagreement between theoretical CTF and cross-resolution curves. The 3D cryo-EM map is in overall good agreement with the recent X-ray crystallography map of Royer et al. (2000, Proc. Natl. Acad. Sci. USA 97, 7107-7111), and it reveals the local threefold arrangement of the three linker chains present within each 1/12 of the complex. The 144 globin chains and 36 linker chains within the complex are clearly visible, and the interdigitation of the 12 coiled-coil helical spokes forming the central toroidal piece is confirmed. Based on these findings, two mechanisms of the dodecameric unit assembly are proposed and termed "zigzag" and "pairwise" polymerizations. However, the detection by cryo-EM of 12 additional rod-like bodies within the toroid raises the possibility that the architecture of the toroid is more complex than previously thought or that yet unknown ligands or allosteric effectors for this oxygen carrier are present.


Asunto(s)
Hemoglobinas/química , Oligoquetos/química , Animales , Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Modelos Moleculares , Conformación Proteica , Sensibilidad y Especificidad
4.
Mol Cell ; 7(5): 1037-45, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11389850

RESUMEN

Tet(O) belongs to a class of ribosomal protection proteins that mediate tetracycline resistance. It is a G protein that shows significant sequence similarity to elongation factor EF-G. Here we present a cryo-electron microscopic reconstruction, at 16 A resolution, of its complex with the E. coli 70S ribosome. Tet(O) was bound in the presence of a noncleavable GTP analog to programmed ribosomal complexes carrying fMet-tRNA in the P site. Tet(O) is directly visible as a mass close to the A-site region, similar in shape and binding position to EF-G. However, there are important differences. One of them is the different location of the tip of domain IV, which in the Tet(O) case, does not overlap with the ribosomal A site but is directly adjacent to the primary tetracycline binding site. Our findings give insights into the mechanism of tetracycline resistance.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras , Ribosomas/química , Resistencia a la Tetraciclina/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/farmacología , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/química , Modelos Moleculares , Conformación Molecular , Biosíntesis de Proteínas/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/farmacología , Ribosomas/metabolismo
5.
Science ; 291(5510): 1959-62, 2001 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-11239155

RESUMEN

Initiation of protein synthesis in eukaryotes requires recruitment of the 40S ribosomal subunit to the messenger RNA (mRNA). In most cases, this depends on recognition of a modified nucleotide cap on the 5' end of the mRNA. However, an alternate pathway uses a structured RNA element in the 5' untranslated region of the messenger or viral RNA called an internal ribosomal entry site (IRES). Here, we present a cryo-electron microscopy map of the hepatitis C virus (HCV) IRES bound to the 40S ribosomal subunit at about 20 A resolution. IRES binding induces a pronounced conformational change in the 40S subunit and closes the mRNA binding cleft, suggesting a mechanism for IRES-mediated positioning of mRNA in the ribosomal decoding center.


Asunto(s)
Regiones no Traducidas 5'/metabolismo , Hepacivirus/metabolismo , ARN Viral/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Regiones no Traducidas 5'/química , Animales , Secuencia de Bases , Microscopía por Crioelectrón , Hepacivirus/genética , Hepacivirus/ultraestructura , Procesamiento de Imagen Asistido por Computador , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Mensajero/metabolismo , ARN Ribosómico 18S/química , ARN Ribosómico 18S/metabolismo , ARN Viral/química , Conejos , Ribosomas/ultraestructura
6.
Structure ; 8(9): 937-48, 2000 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-10986461

RESUMEN

BACKGROUND: This study addresses the general problem of dividing a density map of a nucleic-acid-protein complex obtained by cryo-electron microscopy (cryo-EM) or X-ray crystallography into its two components. When the resolution of the density map approaches approximately 3 A it is generally possible to interpret its shape (i. e., the envelope obtained for a standard choice of threshold) in terms of molecular structure, and assign protein and nucleic acid elements on the basis of their known sequences. The interpretation of low-resolution maps in terms of proteins and nucleic acid elements of known structure is of increasing importance in the study of large macromolecular complexes, but such analyses are difficult. RESULTS: Here we show that it is possible to separate proteins from nucleic acids in a cryo-EM density map, even at 11.5 A resolution. This is achieved by analysing the (continuous-valued) densities using the difference in scattering density between protein and nucleic acids, the contiguity constraints that the image of any nucleic acid molecule must obey, and the knowledge of the molecular volumes of all proteins. CONCLUSIONS: The new method, when applied to an 11.5 A cryo-EM map of the Escherichia coli 70S ribosome, reproduces boundary assignments between rRNA and proteins made from higher-resolution X-ray maps of the ribosomal subunits with a high degree of accuracy. Plausible predictions for the positions of as yet unassigned proteins and RNA components are also possible. One of the conclusions derived from this separation is that 23S rRNA is solely responsible for the catalysis of peptide bond formation. Application of the separation method to any nucleoprotein complex appears feasible.


Asunto(s)
Escherichia coli/ultraestructura , ARN Ribosómico/ultraestructura , Proteínas Ribosómicas/ultraestructura , Ribosomas/ultraestructura , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Conformación Proteica , Estructura Cuaternaria de Proteína , ARN Bacteriano/ultraestructura , ARN Ribosómico/química , ARN Ribosómico 16S/química , ARN Ribosómico 16S/ultraestructura , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/ultraestructura , Proteínas Ribosómicas/química
7.
J Cell Biol ; 150(3): 447-60, 2000 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-10931859

RESUMEN

Three-dimensional cryomaps have been reconstructed for tRNA-ribosome complexes in pre- and posttranslocational states at 17-A resolution. The positions of tRNAs in the A and P sites in the pretranslocational complexes and in the P and E sites in the posttranslocational complexes have been determined. Of these, the P-site tRNA position is the same as seen earlier in the initiation-like fMet-tRNA(f)(Met)-ribosome complex, where it was visualized with high accuracy. Now, the positions of the A- and E-site tRNAs are determined with similar accuracy. The positions of the CCA end of the tRNAs at the A site are different before and after peptide bond formation. The relative positions of anticodons of P- and E-site tRNAs in the posttranslocational state are such that a codon-anticodon interaction at the E site appears feasible.


Asunto(s)
Escherichia coli/genética , Extensión de la Cadena Peptídica de Translación , ARN de Transferencia/ultraestructura , Ribosomas/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Movimiento
9.
EMBO J ; 19(11): 2710-8, 2000 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-10835368

RESUMEN

Using a sordarin derivative, an antifungal drug, it was possible to determine the structure of a eukaryotic ribosome small middle dotEF2 complex at 17.5 A resolution by three-dimensional (3D) cryo-electron microscopy. EF2 is directly visible in the 3D map and the overall arrangement of the complex from Saccharomyces cerevisiae corresponds to that previously seen in Escherichia coli. However, pronounced differences were found in two prominent regions. First, in the yeast system the interaction between the elongation factor and the stalk region of the large subunit is much more extensive. Secondly, domain IV of EF2 contains additional mass that appears to interact with the head of the 40S subunit and the region of the main bridge of the 60S subunit. The shape and position of domain IV of EF2 suggest that it might interact directly with P-site-bound tRNA.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Fúngicas/ultraestructura , Factor 2 de Elongación Peptídica/ultraestructura , Ribosomas/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Proteínas Fúngicas/análisis , Proteínas Fúngicas/química , Sustancias Macromoleculares , Modelos Moleculares , Conformación de Ácido Nucleico , Factor 2 de Elongación Peptídica/análisis , Factor 2 de Elongación Peptídica/química , Conformación Proteica , Estructura Terciaria de Proteína , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN de Hongos/ultraestructura , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN de Transferencia/ultraestructura , Ribosomas/química , Saccharomyces cerevisiae/química
10.
Cell ; 100(5): 537-49, 2000 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-10721991

RESUMEN

Over 73,000 projections of the E. coli ribosome bound with formyl-methionyl initiator tRNAf(Met) were used to obtain an 11.5 A cryo-electron microscopy map of the complex. This map allows identification of RNA helices, peripheral proteins, and intersubunit bridges. Comparison of double-stranded RNA regions and positions of proteins identified in both cryo-EM and X-ray maps indicates good overall agreement but points to rearrangements of ribosomal components required for the subunit association. Fitting of known components of the 50S stalk base region into the map defines the architecture of the GTPase-associated center and reveals a major change in the orientation of the alpha-sarcin-ricin loop. Analysis of the bridging connections between the subunits provides insight into the dynamic signaling mechanism between the ribosomal subunits.


Asunto(s)
Microscopía por Crioelectrón , Escherichia coli/ultraestructura , Ribosomas/ultraestructura , Proteínas Bacterianas/ultraestructura , GTP Fosfohidrolasas/ultraestructura , Procesamiento de Imagen Asistido por Computador , Sustancias Macromoleculares , Factor G de Elongación Peptídica/ultraestructura , ARN Bacteriano/ultraestructura , ARN Ribosómico/ultraestructura , ARN de Transferencia de Metionina/ultraestructura , Proteínas Ribosómicas/ultraestructura , Soluciones
11.
J Struct Biol ; 128(1): 44-50, 1999 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-10600557

RESUMEN

The large 50S subunit of the Haloarcula marismortui 70S ribosome was solved to 19 A using cryo-electron microscopy and single particle reconstruction techniques and to 9 A using X-ray crystallography. In the latter case, phases were determined by multiple isomorphous replacement and anomalous scattering from three heavy atom derivatives. The availability of X-ray and electron microscopy (EM) data has made it possible to compare the results of the two experimental methods. In the flexible regions of the 50S subunit, small differences in the mass distribution were detected. These differences can be attributed to the influence of packing in the crystal cell. The rotationally averaged power spectra of X-ray and EM were compared in an overlapping spatial frequency range from 60 to 13 A. The resulting ratio of X-ray to EM power ranges from 1 to 15, reflecting a progressively larger underestimation of the Fourier amplitudes by the electron microscope.


Asunto(s)
Haloarcula marismortui/química , Ribosomas/química , Proteínas Arqueales/química , Proteínas Arqueales/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Haloarcula marismortui/ultraestructura , Modelos Moleculares
12.
Nat Struct Biol ; 6(7): 643-7, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10404220

RESUMEN

Cryo-electron microscopy has been used to visualize elongation factor G (EF-G) on the 70S ribosome in GDP and GTP states. GTP hydrolysis is required for binding of all the domains of EF-G to the pretranslocational complex and for the completion of translocation. In addition, large conformational changes have been identified in the ribosome. The head of the 30S subunit shifts toward the L1 protein side, and the L7/L12 stalk becomes bifurcated upon EF-G binding. Upon GTP hydrolysis, the bifurcation is reversed and an arc-like connection is formed between the base of the stalk and EF-G.


Asunto(s)
Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Factores de Elongación de Péptidos/química , Ribosomas/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , Escherichia coli/química , Modelos Biológicos , Modelos Moleculares , Factor G de Elongación Peptídica , Factores de Elongación de Péptidos/metabolismo
13.
J Biol Chem ; 274(13): 8723-9, 1999 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-10085112

RESUMEN

The effect of buffer conditions on the binding position of tRNA on the Escherichia coli 70 S ribosome have been studied by means of three-dimensional (3D) cryoelectron microscopy. Either deacylated tRNAfMet or fMet-tRNAfMet were bound to the 70 S ribosomes, which were programmed with a 46-nucleotide mRNA having AUG codon in the middle, under two different buffer conditions (conventional buffer: containing Tris and higher Mg2+ concentration [10-15 mM]; and polyamine buffer: containing Hepes, lower Mg2+ concentration [6 mM], and polyamines). Difference maps, obtained by subtracting 3D maps of naked control ribosome in the corresponding buffer from the 3D maps of tRNA.ribosome complexes, reveal the distinct locations of tRNA on the ribosome. The position of deacylated tRNAfMet depends on the buffer condition used, whereas that of fMet-tRNAfMet remains the same in both buffer conditions. The acylated tRNA binds in the classical P site, whereas deacylated tRNA binds mostly in an intermediate P/E position under the conventional buffer condition and mostly in the position corresponding to the classical P site, i. e. in the P/P state, under the polyamine buffer conditions.


Asunto(s)
ARN de Transferencia/ultraestructura , Ribosomas/ultraestructura , Acilación , Tampones (Química) , Microscopía por Crioelectrón , Escherichia coli/genética , Modelos Moleculares , Poli U/genética , ARN Mensajero/genética , ARN de Transferencia de Metionina/ultraestructura , Difracción de Rayos X
14.
Structure ; 7(12): 1567-73, 1999 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-10647187

RESUMEN

BACKGROUND: Ribosomes are complex macromolecular machines that perform the translation of the genetic message. Cryo-electron microscopic (cryo-EM) maps of the Escherichia coli 70S ribosome are approaching a resolution of 10 A and X-ray maps of the 30S and 50S subunits are now available at 5 A. These maps show a lot of details about the inner architecture of the ribosome and ribosomal RNA helices are clearly visible. However, in the absence of further biological information, even at the higher resolution of the X-ray maps many rRNA helices can be placed only tentatively. Here we show that genetic tagging in combination with cryo-EM can place and orient double-stranded RNA helices with high accuracy. RESULTS: A tRNA sequence inserted into the E. coli 23S ribosomal RNA gene, at one of the points of sequence expansion in eukaryotic ribosomes, is visible in the cryo-EM map as a peripheral 'foot' structure. By tracing its acceptor-stem end, the location of helix 63 in domain IV and helix 98 in domain VI of the 50S subunit could be precisely determined. CONCLUSIONS: Our study demonstrates for the first time that features of a three-dimensional cryo-EM map of an asymmetric macromolecular complex can be interpreted in terms of secondary and primary structure. Using the identified helices as a starting point, it is possible to model and interpret, in molecular terms, a larger portion of the ribosome. Our results might be also useful in interpreting and refining the current X-ray maps.


Asunto(s)
Escherichia coli/genética , Escherichia coli/ultraestructura , Conformación de Ácido Nucleico , ARN Ribosómico 23S/ultraestructura , ARN de Transferencia/ultraestructura , Ribosomas/ultraestructura , Secuencia de Bases , Microscopía por Crioelectrón/métodos , Cartilla de ADN , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Insercional , Reacción en Cadena de la Polimerasa , ARN Bacteriano/genética , ARN Bacteriano/ultraestructura , ARN Ribosómico 23S/genética , ARN de Transferencia/genética
15.
J Biol Chem ; 273(29): 18429-34, 1998 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-9660811

RESUMEN

The three-dimensional structure of the cardiac muscle ryanodine receptor (RyR2) is described and compared with its skeletal muscle isoform (RyR1). Previously, structural studies of RyR2 have not been as informative as those for RyR1 because optimal conditions for electron microscopy, which require low levels of phospholipid, are destabilizing for RyR2. A simple procedure was devised for diluting RyR2 (in phospholipid-containing buffer) into a lipid-free buffer directly on the electron microscope grid, followed by freezing within a few seconds. Cryoelectron microscopy of RyR2 so prepared yielded images of sufficient quality for analysis by single particle image processing. Averaged projection images for RyR2, as well as for RyR1, prepared under the same conditions, were found to be nearly identical in overall dimensions and appearance at the resolution attained, approximately 30 A. An initial three-dimensional reconstruction of RyR2 was determined (resolution approximately 41 A) and compared with previously reported reconstructions of RyR1. Although they looked similar, which is consistent with the similarity found for the projection images, and with expectations based on the 66% amino acid sequence identity of the two isoforms, structural differences near the corners of the cytoplasmic assembly were observed in both two- and three-dimensional studies.


Asunto(s)
Miocardio/ultraestructura , Canal Liberador de Calcio Receptor de Rianodina/ultraestructura , Animales , Perros , Técnica de Fractura por Congelación , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica , Músculo Esquelético/ultraestructura
16.
Cell ; 93(7): 1105-15, 1998 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-9657144

RESUMEN

The 50S subunit of the ribosome catalyzes the peptidyl-transferase reaction of protein synthesis. We have generated X-ray crystallographic electron density maps of the large ribosomal subunit from Haloarcula marismortui at various resolutions up to 9 A using data from crystals that diffract to 3 A. Positioning a 20 A resolution EM image of these particles in the crystal lattice produced phases accurate enough to locate the bound heavy atoms in three derivatives using difference Fourier maps, thus demonstrating the correctness of the EM model and its placement in the unit cell. At 20 A resolution, the X-ray map is similar to the EM map; however, at 9 A it reveals long, continuous, but branched features whose shape, diameter, and right-handed twist are consistent with segments of double-helical RNA that crisscross the subunit.


Asunto(s)
Cristalografía por Rayos X/métodos , Haloarcula marismortui/química , Procesamiento de Imagen Asistido por Computador/métodos , Ribosomas/química , Microscopía Electrónica/métodos , ARN de Archaea/química , ARN Ribosómico 5S/química , Proteínas Ribosómicas/química
17.
J Mol Biol ; 280(1): 103-16, 1998 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-9653034

RESUMEN

Cryo-electron microscopy of the ribosome in different binding states with mRNA and tRNA helps unravel the different steps of protein synthesis. Using over 29,000 projections of a ribosome complex in single-particle form, a three-dimensional map of the Escherichia coli 70 S ribosome was obtained in which a single site, the P site, is occupied by fMet-tRNAfMet as directed by an AUG codon containing mRNA. The superior resolution of this three-dimensional map, 14.9 A, has made it possible to fit the tRNA X-ray crystal structure directly and unambiguously into the electron density, thus determining the locations of anticodon-codon interaction and peptidyltransferase center of the ribosome. Furthermore, at this resolution, one of the distinctly visible domains corresponding to a ribosomal protein, L1, closely matches with its X-ray structure.


Asunto(s)
Proteínas Bacterianas/química , Conformación de Ácido Nucleico , Conformación Proteica , ARN de Transferencia de Metionina/ultraestructura , Proteínas Ribosómicas/química , Ribosomas/ultraestructura , Proteínas Bacterianas/metabolismo , Sitios de Unión , Crioultramicrotomía , Cristalografía por Rayos X , Escherichia coli/genética , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica , Modelos Moleculares , Péptidos , ARN de Transferencia/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Thermus thermophilus/metabolismo
18.
Proc Natl Acad Sci U S A ; 95(11): 6134-8, 1998 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-9600930

RESUMEN

During protein synthesis, elongation factor G (EF-G) binds to the ribosome and promotes the step of translocation, a process in which tRNA moves from the A to the P site of the ribosome and the mRNA is advanced by one codon. By using three-dimensional cryo-electron microscopy, we have visualized EF-G in a ribosome-EF-G-GDP-fusidic acid complex. Fitting the crystal structure of EF-G-GDP into the cryo density map reveals a large conformational change mainly associated with domain IV, the domain that mimics the shape of the anticodon arm of the tRNA in the structurally homologous ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. The tip portion of this domain is found in a position that overlaps the anticodon arm of the A-site tRNA, whose position in the ribosome is known from a study of the pretranslocational complex, implying that EF-G displaces the A-site tRNA to the P site by physical interaction with the anticodon arm.


Asunto(s)
Escherichia coli/genética , Factores de Elongación de Péptidos/genética , Biosíntesis de Proteínas , Ribosomas/genética , Cristalografía por Rayos X , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Factor G de Elongación Peptídica , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/ultraestructura , Conformación Proteica , Ribosomas/química , Ribosomas/ultraestructura
19.
J Struct Biol ; 118(3): 197-219, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9169230

RESUMEN

Cryoelectron microscopy provides the means of studying macromolecules in their native state. However, the contrast transfer function (CTF) makes the images and the three-dimensional (3D) maps derived from them difficult to interpret. We developed methods to determine the CTF from experimental data and to obtain a CTF-corrected 3D reconstruction. The CTF correction and 3D reconstruction accomplished in one step make it easy to combine different defocus data sets and decrease the error accumulation in the computation. These methods were applied to energy-filtered images of the 70S Escherichia coli ribosome, resulting in a distortion-free 3D map of the ribosome at 1/24.5 A-1 resolution, as determined by the differential phase residual resolution criterion.


Asunto(s)
Escherichia coli/química , Escherichia coli/ultraestructura , Procesamiento de Imagen Asistido por Computador/métodos , Ribosomas/química , Ribosomas/ultraestructura , Sustancias Macromoleculares , Microscopía Electrónica , Modelos Moleculares , Tamaño de la Partícula , Reproducibilidad de los Resultados
20.
J Mol Biol ; 266(2): 343-56, 1997 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-9047368

RESUMEN

A new technique for neutron scattering, the proton-spin contrast-variation, improves the signal-to-noise ratio more than one order of magnitude as compared to conventional techniques. The improved signal enables small RNA ligands within a large deuterated ribonucleic acid-protein complex to be measured. We used this technique to determine the positions of the two tRNAs within the elongating ribosome before and after translocation. Using a four-sphere model for each of the L-shaped tRNAs, unequivocal solutions were found for the localization of the mass centre of both tRNAs. The centre of gravity is located in the interface cavity separating the ribosomal subunits near the neck of the 30 S subunit. It moves during translocation by 12(+/-4) A towards the head of the 30 S subunit and slightly towards the L1 protuberance of the 50 S subunit.


Asunto(s)
Neutrones , ARN de Transferencia/análisis , ARN de Transferencia/química , Ribosomas/ultraestructura , Dispersión de Radiación , Secuencia de Bases , Escherichia coli/genética , Modelos Moleculares , Datos de Secuencia Molecular , Extensión de la Cadena Peptídica de Translación , Protones , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA