RESUMEN
Background and Aim: Brucellosis, paratuberculosis (PTb), and infections caused by small ruminant lentivirus (SRLV), formerly known as caprine arthritis encephalitis virus (CAEV), adversely affect goat production systems. Nonetheless, commonly used diagnostic tests can only determine one analyte at a time, increasing disease surveillance costs, and limiting their routine use. This study aimed to design and validate a multiplex assay for antibody detection against these three diseases simultaneously. Materials and Methods: Two recombinant proteins from the SRLV (p16 and gp38), the native hapten of Brucella melitensis, and the paratuberculosis-protoplasmic antigen 3 from Mycobacterium avium subsp. paratuberculosis (MAP) were used to devise and assess a multiplex assay. Conditions for the Luminex® multiplex test were established and validated by sensitivity, specificity, repeatability, and reproducibility parameters. Cut-off points for each antigen were also established. Results: The 3-plex assay had high sensitivity (84%) and specificity (95%). The maximum coefficients of variation were 23.8% and 20.5% for negative and positive control samples, respectively. The p16 and gp38 SRLV antigens are 97% and 95%, similar to the CAEV sequence found in GenBank, respectively. Conclusion: The multiplex test can be effectively used for the simultaneous detection of antibodies against SRLV, MAP and B. melitensis in goats.
RESUMEN
In this work we characterized the occurrence of killer activity in 64 Candida glabrata clinical isolates under different conditions. We found that only 6.25 % of the clinical isolates tested were positive for killer activity against a Saccharomyces cerevisiae W303 sensitive strain. Sensitivity of killer activity to different values of pH and temperatures was analyzed. We found that the killer activity presented by all isolates was resistant to every pH and temperature tested, although optimal activity was found at a range of pH values from 4 to 7 and at 37°C. We did not observe extrachromosomal genetic elements associated with killer activity in any of the positive C. glabrata isolates. The killer effect was due to a decrease in viability and DNA fragmentation in sensitive yeast.