Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Inorg Chem ; 19(8): 1399-414, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25377894

RESUMEN

Oligotropha carboxidovorans is characterized by the aerobic chemolithoautotrophic utilization of CO. CO oxidation by CO dehydrogenase proceeds at a unique bimetallic [CuSMoO2] cluster which matures posttranslationally while integrated into the completely folded apoenzyme. Kanamycin insertional mutants in coxE, coxF and coxG were characterized with respect to growth, expression of CO dehydrogenase, and the type of metal center present. These data along with sequence information were taken to delineate a model of metal cluster assembly. Biosynthesis starts with the MgATP-dependent, reductive sulfuration of [Mo(VI)O3] to [Mo(V)O2SH] which entails the AAA+-ATPase chaperone CoxD. Then Mo(V) is reoxidized and Cu(1+)-ion is integrated. Copper is supplied by the soluble CoxF protein which forms a complex with the membrane-bound von Willebrand protein CoxE through RGD-integrin interactions and enables the reduction of CoxF-bound Cu(2+), employing electrons from respiration. Copper appears as Cu(2+)-phytate, is mobilized through the phytase activity of CoxF and then transferred to the CoxF putative copper-binding site. The coxG gene does not participate in the maturation of the bimetallic cluster. Mutants in coxG retained the ability to utilize CO, although at a lower growth rate. They contained a regular CO dehydrogenase with a functional catalytic site. The presence of a pleckstrin homology (PH) domain on CoxG and the observed growth rates suggest a role of the PH domain in recruiting CO dehydrogenase to the cytoplasmic membrane enabling electron transfer from the enzyme to the respiratory chain. CoxD, CoxE and CoxF combine motifs of a DEAD-box RNA helicase which would explain their mutual translation.


Asunto(s)
Aldehído Oxidorreductasas/biosíntesis , Aldehído Oxidorreductasas/metabolismo , Alphaproteobacteria/enzimología , Cobre/metabolismo , Molibdeno/metabolismo , Complejos Multienzimáticos/biosíntesis , Complejos Multienzimáticos/metabolismo , Procesamiento Proteico-Postraduccional , Azufre/metabolismo , Aldehído Oxidorreductasas/química , Alphaproteobacteria/metabolismo , Dominio Catalítico , Cobre/química , Molibdeno/química , Complejos Multienzimáticos/química , Azufre/química
2.
Biochem Biophys Res Commun ; 447(3): 413-8, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24717648

RESUMEN

Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO+H2O→CO2+2e(-)+2H(+)) which proceeds at a unique [CuSMo(O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding Ki-values (mM): l-cysteine (5.2), d-cysteine (9.7), N-acetyl-l-cysteine (8.2), d,l-homocysteine (25.8), l-cysteine-glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand {[Mo(VI)(O)OH(2)SCu(I)(SR)S-Cys]} leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed.


Asunto(s)
Aldehído Oxidorreductasas/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Bradyrhizobiaceae/enzimología , Complejos Multienzimáticos/antagonistas & inhibidores , Compuestos de Sulfhidrilo/farmacología , Aldehído Oxidorreductasas/química , Proteínas Bacterianas/química , Dominio Catalítico/efectos de los fármacos , Cobre/química , Espectroscopía de Resonancia por Spin del Electrón , Molibdeno/química , Complejos Multienzimáticos/química , Oxidación-Reducción
4.
J Biol Chem ; 284(14): 9578-86, 2009 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-19189964

RESUMEN

CO dehydrogenase from the Gram-negative chemolithoautotrophic eubacterium Oligotropha carboxidovorans OM5 is a structurally characterized molybdenum-containing iron-sulfur flavoenzyme, which catalyzes the oxidation of CO (CO + H(2)O --> CO(2) + 2e(-) + 2H(+)). It accommodates in its active site a unique bimetallic [CuSMoO(2)] cluster, which is subject to post-translational maturation. Insertional mutagenesis of coxD has established its requirement for the assembly of the [CuSMoO(2)] cluster. Disruption of coxD led to a phenotype of the corresponding mutant OM5 D::km with the following characteristics: (i) It was impaired in the utilization of CO, whereas the utilization of H(2) plus CO(2) was not affected; (ii) Under appropriate induction conditions bacteria synthesized a fully assembled apo-CO dehydrogenase, which could not oxidize CO; (iii) Apo-CO dehydrogenase contained a [MoO(3)] site in place of the [CuSMoO(2)] cluster; and (iv) Employing sodium sulfide first and then the Cu(I)-(thiourea)(3) complex, the non-catalytic [MoO(3)] site could be reconstituted in vitro to a [CuSMoO(2)] cluster capable of oxidizing CO. Sequence information suggests that CoxD is a MoxR-like AAA+ ATPase chaperone related to the hexameric, ring-shaped BchI component of Mg(2+)-chelatases. Recombinant CoxD, which appeared in Escherichia coli in inclusion bodies, occurs exclusively in cytoplasmic membranes of O. carboxidovorans grown in the presence of CO, and its occurrence coincided with GTPase activity upon sucrose density gradient centrifugation of cell extracts. The presumed function of CoxD is the partial unfolding of apo-CO dehydrogenase to assist in the stepwise introduction of sulfur and copper in the [MoO(3)] center of the enzyme.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Aldehído Oxidorreductasas/metabolismo , Alphaproteobacteria/metabolismo , Chaperonas Moleculares/metabolismo , Complejos Multienzimáticos/metabolismo , Familia de Multigenes/genética , Adenosina Trifosfatasas/genética , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/aislamiento & purificación , Alphaproteobacteria/genética , Dominio Catalítico , Biología Computacional , Espectroscopía de Resonancia por Spin del Electrón , Chaperonas Moleculares/genética , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/aislamiento & purificación , Mutación/genética , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA