RESUMEN
Palaeodemographic studies of animals using frequency distributions of radiocarbon dates are increasingly used in studies of Quaternary extinction but are complicated by taphonomic bias, or the loss of material through time. Current taphonomic models are based on the temporal frequency distributions of sediments, but bone is potentially lost at greater rates because not all sedimentary contexts preserve bone. We test the hypotheses that (i) the loss of bone over time is greater than that of sediment and (ii) this rate of loss varies geographically at large scales. We compiled radiocarbon dates on Pleistocene-aged bone from eastern Beringia (EB), the contiguous United States (CUSA) and South America (SA), from which we developed models of taphonomic loss. We find that bone is lost at greater rates than terrestrial sediment in general, but only for CUSA and SA. Bone in EB is lost at approximately the same rate as terrestrial sediments, which demonstrates the excellent preservation environments of arctic regions, presumably due to preservative effects of permafrost. These differences between bone and sediment preservation as well as between arctic and non-arctic regions should be taken into account by any research addressing past faunal population dynamics based on temporal frequency distributions.
Asunto(s)
Huesos , Ambiente , Fósiles , Vertebrados , Alaska , Animales , Regiones Árticas , Geología , América del Sur , Clima Tropical , Estados UnidosRESUMEN
Following Martin [Martin PS (1973) Science 179:969-974], we propose the hypothesis that the timing of human arrival to the New World can be assessed by examining the ecological impacts of a small population of people on extinct Pleistocene megafauna. To that end, we compiled lists of direct radiocarbon dates on paleontological specimens of extinct genera from North and South America with the expectation that the initial decline of extinct megafauna should correspond in time with the initial evidence for human colonization and that those declines should occur first in eastern Beringia, next in the contiguous United States, and last in South America. Analyses of spacings and frequency distributions of radiocarbon dates for each region support the idea that the extinction event first commenced in Beringia, roughly 13,300-15,000 BP. For the United States and South America, extinctions commenced considerably later but were closely spaced in time. For the contiguous United States, extinction began at ca. 12,900-13,200 BP, and at ca. 12,600-13,900 BP in South America. For areas south of Beringia, these estimates correspond well with the first significant evidence for human presence and are consistent with the predictions of the overkill hypothesis.