Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 48(41): 15713-15722, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31549707

RESUMEN

In this study, we present two ruthenium(ii) diimine complexes appended with ferrocene which show metal to ligand charge transfer 3MLCT emission lifetimes around 630 ns. We also present a similar complex with two ferrocene units which has decreased emission. These complexes have been studied by electrochemical, electronic absorption, and Raman, resonance Raman and transient resonance Raman means, coupled with density functional theoretical approaches. For these systems, the optical spectra are dominated by a low energy ruthenium(ii) MLCT transition; which can be modulated by the presence of pendant ferrocene units and the extent of conjugation of the ferrocenyl bipyridine backbone. Tuning of the lowest energy transition in terms of intensity (4 to 18 × 10-3 M-1 cm-1) and energy (535 to 563 nm) was achieved by these means.

2.
J Phys Chem A ; 123(28): 5957-5968, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31287304

RESUMEN

In this study, we show that the "Michler's base" motif can be combined in a donor-acceptor arrangement with a range of acceptor units (indandione, indandione with cyano substituents, barbituric acid, or rhodanine) to give photophysical properties that are dominated by delocalized excited states. By changing the acceptor unit and by altering the planarity of this system, it is possible to tune the low-energy absorption feature in terms of intensity from 23 000 to 67 000 M-1 cm-1 and energy between 500 and 700 nm. Resonance Raman spectroscopy and time-dependent density functional theory indicate that this absorption feature has two underlying transitions: a weaker charge-transfer transition around 500 nm and a strong mixed or delocalized transition between 550 and 700 nm. Generally, these compounds are not strongly emissive; however, dual emission is observed, and the relative intensity of the two states can be modulated by solvent polarity. The energy of these emissive states does not correlate with the Lippert-Mataga analysis in which the Stokes shift is related to the solvent polarity (Δf).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA