Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 33(1): e2719, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36380453

RESUMEN

Wild and semidomesticated reindeer are one of the key species in Arctic and subarctic areas, and their population dynamics are closely tied to winter conditions. Difficult snow conditions have been found to decrease the calving success and survivability of reindeer, but the economic effects of variation in winter conditions on reindeer husbandry have not been studied. In this study, we combine state-of-the-art economic-ecological modeling with the analysis of annual reindeer management reports from Finland. These contain local knowledge of herding communities. We quantify the occurrence probabilities of different types of winters from annual management reports and analyze the effects of this variation in winter conditions on reindeer husbandry using an age- and sex-structured bioeconomic reindeer-lichen model. Our results show that difficult winters decrease the net revenues of reindeer husbandry. However, they also protect lichen pastures from grazing, thereby increasing future net revenues. Nonetheless, our solutions show that the variability of winter conditions overall decrease the net income of herders compared to constant winter conditions. Low lichen biomass appears to make reindeer management more sensitive to the effects of difficult winter conditions. We also found that it is economically sensible to use supplementary feeding during difficult winters, but the net revenues still decrease compared to average winters because of the high feeding costs. Overall, our analysis suggests that the increasing variability of winter conditions due to climate change will decrease net revenues in reindeer husbandry. This decrease will still occur even if the most extreme effects of climate change do not occur. This study shows that combining a state-of-the-art bioeconomic model and practitioner knowledge can bring compatible insights, ideas, results, and a bottom-up perspective to the discussion.


Asunto(s)
Cambio Climático , Reno , Animales , Finlandia , Líquenes , Estaciones del Año , Nieve , Crianza de Animales Domésticos/economía , Crianza de Animales Domésticos/normas
2.
Ecol Evol ; 7(20): 8282-8302, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29075449

RESUMEN

Ungulate grazing and trampling strongly affect pastures and ecosystems throughout the world. Ecological population models are used for studying these systems and determining the guidelines for sustainable and economically viable management. However, the effect of trampling and other resource wastage is either not taken into account or quantified with data in earlier models. Also, the ability of models to describe the herbivore impact on pastures is usually not validated. We used a detailed model and data to study the level of winter- and summertime lichen wastage by reindeer and the effects of wastage on population sizes and management. We also validated the model with respect to its ability of predicting changes in lichen biomass and compared the actual management in herding districts with model results. The modeling efficiency value (0.75) and visual comparison between the model predictions and data showed that the model was able to describe the changes in lichen pastures caused by reindeer grazing and trampling. At the current lichen biomass levels in the northernmost Finland, the lichen wastage varied from 0 to 1 times the lichen intake during winter and from 6 to 10 times the intake during summer. With a higher value for wastage, reindeer numbers and net revenues were lower in the economically optimal solutions. Higher wastage also favored the use of supplementary feeding in the optimal steady state. Actual reindeer numbers in the districts were higher than in the optimal steady-state solutions for the model in 18 herding districts out of 20. Synthesis and applications. We show that a complex model can be used for analyzing ungulate-pasture dynamics and sustainable management if the model is parameterized and validated for the system. Wastage levels caused by trampling and other causes should be quantified with data as they strongly affect the results and management recommendations. Summertime lichen wastage caused by reindeer is higher than expected, which suggests that seasonal pasture rotation should be used to prevent the heavy trampling of winter lichen pastures during summer. In the present situation, reindeer numbers in northernmost Finland are in most cases higher than in the management solutions given by the model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA