Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz J Med Biol Res ; 46(12): 1056-1063, 2013 12.
Artículo en Inglés | MEDLINE | ID: mdl-24345915

RESUMEN

Estragole is a volatile terpenoid, which occurs naturally as a constituent of the essential oils of many plants. It has several pharmacological and biological activities. The objective of the present study was to investigate the mechanism of action of estragole on neuronal excitability. Intact and dissociated dorsal root ganglion neurons of rats were used to record action potential and Na+ currents with intracellular and patch-clamp techniques, respectively. Estragole blocked the generation of action potentials in cells with or without inflexions on their descendant (repolarization) phase (Ninf and N0 neurons, respectively) in a concentration-dependent manner. The resting potentials and input resistances of Ninf and N0 cells were not altered by estragole (2, 4, and 6 mM). Estragole also inhibited total Na+ current and tetrodotoxin-resistant Na+ current in a concentration-dependent manner (IC50 of 3.2 and 3.6 mM, respectively). Kinetic analysis of Na+ current in the presence of 4 mM estragole showed a statistically significant reduction of fast and slow inactivation time constants, indicating an acceleration of the inactivation process. These data demonstrate that estragole blocks neuronal excitability by direct inhibition of Na+ channel conductance activation. This action of estragole is likely to be relevant to the understanding of the mechanisms of several pharmacological effects of this substance.

2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;46(12): 1056-1063, dez. 2013. tab, graf
Artículo en Inglés | LILACS | ID: lil-695978

RESUMEN

Estragole is a volatile terpenoid, which occurs naturally as a constituent of the essential oils of many plants. It has several pharmacological and biological activities. The objective of the present study was to investigate the mechanism of action of estragole on neuronal excitability. Intact and dissociated dorsal root ganglion neurons of rats were used to record action potential and Na+ currents with intracellular and patch-clamp techniques, respectively. Estragole blocked the generation of action potentials in cells with or without inflexions on their descendant (repolarization) phase (Ninf and N0 neurons, respectively) in a concentration-dependent manner. The resting potentials and input resistances of Ninf and N0 cells were not altered by estragole (2, 4, and 6 mM). Estragole also inhibited total Na+ current and tetrodotoxin-resistant Na+ current in a concentration-dependent manner (IC50 of 3.2 and 3.6 mM, respectively). Kinetic analysis of Na+ current in the presence of 4 mM estragole showed a statistically significant reduction of fast and slow inactivation time constants, indicating an acceleration of the inactivation process. These data demonstrate that estragole blocks neuronal excitability by direct inhibition of Na+ channel conductance activation. This action of estragole is likely to be relevant to the understanding of the mechanisms of several pharmacological effects of this substance.

3.
Fundam Clin Pharmacol ; 24(3): 341-50, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19682086

RESUMEN

Various essential oils are rich in carvacrol, a monoterpenic phenol isomeric with thymol. This study was undertaken to assess the vasorelaxant effects of thymol and carvacrol in rat isolated aorta and the putative mechanisms underlying these effects. Thymol and carvacrol produced a concentration-dependent relaxation on the aortic ring preparations pre-contracted using KCl (IC(50) value of 64.40 +/- 4.41 and 78.80 +/- 11.91 microm, respectively) or using phenylephrine (PHE, 0.1 microm) (IC(50) value of 106.40 +/- 11.37 and 145.40 +/- 6.07 microm, respectively) and inhibited the concentration-response curves of aortic rings to PHE or KCl. In Ca(2+)-free medium with ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (2 mm), thymol and carvacrol both at 1000 microm completely abolished the phasic component of PHE-induced endothelium-containing ring contractions. At 400 microm, thymol and carvacrol significantly reduced the CaCl(2)-induced contractions in Ca(2+)-free medium. Furthermore, both thymol and carvacrol (300 and 1000 microm) significantly reduced the contraction evoked by phorbol dibutyrate (1 microm), an activator of protein kinase C. Magnitude of this inhibitory effect was enhanced in the presence of the Ca2+ pump inhibitor, thapsigargin (1 microm). At 1000 microm, neither thymol nor carvacrol altered the resting potential of vascular smooth muscle cells. In conclusion, thymol and carvacrol induced an endothelium-independent relaxation in rat isolated aorta, an effect that seems mediated through some mechanisms probably involving a transduction pathway between Ca(2+) release from sarcoplasmic reticulum and/or regulation of the Ca2+ sensitivity of the contractile system. Moreover, it's conceivable that thymol and carvacrol, at low concentrations, block the Ca(2+) influx through the membrane.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Monoterpenos/farmacología , Músculo Liso Vascular/efectos de los fármacos , Timol/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Aorta Torácica/fisiología , Cimenos , Esquema de Medicación , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Masculino , Monoterpenos/química , Músculo Liso Vascular/fisiología , Técnicas de Cultivo de Órganos , Fenoles/química , Fenoles/farmacología , Ratas , Ratas Wistar , Estereoisomerismo , Timol/química , Vasodilatación/fisiología , Vasodilatadores/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA