Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Methods Mol Biol ; 2748: 29-39, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38070105

RESUMEN

Retroviral transduction is a highly useful tool to genetically engineer hard-to-transfect human primary cells. Here, we transduce human primary T cells with a tumor-specific T cell receptor. This creates a useful tool to analyze T cell-cancer cell interactions, such as cytolysis analysis using xCELLigence technology.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Vectores Genéticos , Retroviridae/genética , Receptores de Antígenos de Linfocitos T/genética , Transducción Genética
3.
Front Immunol ; 14: 1180997, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359554

RESUMEN

Checkpoint inhibition (CPI) therapy and adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TIL-based ACT) are the two most effective immunotherapies for the treatment of metastatic melanoma. While CPI has been the dominating therapy in the past decade, TIL-based ACT is beneficial for individuals even after progression on previous immunotherapies. Given that notable differences in response have been made when used as a subsequent treatment, we investigated how the qualities of TILs changed when the ex vivo microenvironment of intact tumor fragments were modulated with checkpoint inhibitors targeting programmed death receptor 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Initially, we show that unmodified TILs from CPI-resistant individuals can be produced, are overwhelmingly terminally differentiated, and are capable of responding to tumor. We then investigate these properties in ex vivo checkpoint modulated TILs finding that that they retain these qualities. Lastly, we confirmed the specificity of the TILs to the highest responding tumor antigens, and identified this reactivity resides largely in CD39+CD69+ terminally differentiated populations. Overall, we found that anti-PD-1 will alter the proliferative capacity while anti-CTLA4 will influence breadth of antigen specificity.


Asunto(s)
Linfocitos Infiltrantes de Tumor , Melanoma , Humanos , Inmunoterapia , Microambiente Tumoral
5.
Front Immunol ; 12: 718863, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899685

RESUMEN

T-cell activation upon antigen stimulation is essential for the continuation of the adaptive immune response. Impairment of mitochondrial oxidative phosphorylation is a well-known disruptor of T-cell activation. Dihydroorotate dehydrogenase (DHODH) is a component of the de novo synthesis of pyrimidines, the activity of which depends on functional oxidative phosphorylation. Under circumstances of an inhibited oxidative phosphorylation, DHODH becomes rate-limiting. Inhibition of DHODH is known to block clonal expansion and expression of effector molecules of activated T cells. However, this effect has been suggested to be caused by downstream impairment of oxidative phosphorylation rather than a lower rate of pyrimidine synthesis. In this study, we successfully inhibit the DHODH of T cells with no residual effect on oxidative phosphorylation and demonstrate a dose-dependent inhibition of proliferation of activated CD3+ T cells. This block is fully rescued when uridine is supplemented. Inhibition of DHODH does not alter expression of effector molecules but results in decreased intracellular levels of deoxypyrimidines without decreasing cell viability. Our results clearly demonstrate the DHODH and mitochondrial linked pyrimidine synthesis as an independent and important cytostatic regulator of activated T cells.


Asunto(s)
Activación de Linfocitos/inmunología , Mitocondrias/metabolismo , Pirimidinas/biosíntesis , Proliferación Celular/fisiología , Dihidroorotato Deshidrogenasa/antagonistas & inhibidores , Humanos , Mitocondrias/efectos de los fármacos
6.
Vaccines (Basel) ; 9(11)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34835225

RESUMEN

There is an increasing interest in the development of Receptor Tyrosine Kinases inhibitors (RTKIs) for cancer treatment, as dysregulation of RTK expression can govern oncogenesis. Among the newer generations of RTKIs, many target Mer Tyrosine Kinase (MERTK) and Fms related RTK 3 (FLT3). Next to being overexpressed in many cancers, MERTK and FLT3 have important roles in immune cell development and function. In this study, we address how the new generation and potent RTKIs of MERTK/FLT3 affect human primary CD8+ T cell function. Using ex vivo T cell receptor (TCR)-activated CD8+ T cells, we demonstrate that use of dual MERTK/FLT3 inhibitor UNC2025 restricts CD8+ T proliferation at the G2 phase, at least in part by modulation of mTOR signaling. Cytokine production and activation remain largely unaffected. Finally, we show that activated CD8+ T cells express FLT3 from day two post activation, and FLT3 inhibition with AC220 (quizartinib) or siRNA-mediated knockdown affects cell cycle kinetics. These results signify that caution is needed when using potent RTKIs in the context of antitumor immune responses.

7.
J Vis Exp ; (176)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34747403

RESUMEN

During activation, the metabolism of T cells adapts to changes that impact their fate. An increase in mitochondrial oxidative phosphorylation is indispensable for T cell activation, and the survival of memory T cells is dependent on mitochondrial remodeling. Consequently, this affects the long-term clinical outcome of cancer immunotherapies. Changes in T cell quality are often studied by flow cytometry using well-known surface markers and not directly by their metabolic state. This is an optimized protocol for measuring real-time mitochondrial respiration of primary human T cells using an Extracellular Flux Analyzer and the cytokines IL-2 and IL-15, which differently affect T cell metabolism. It is shown that the metabolic state of T cells can clearly be distinguished by measuring the oxygen consumption when inhibiting key complexes in the metabolic pathway and that the accuracy of these measurements is highly dependent on optimal inhibitor concentration and inhibitor injection strategy. This standardized protocol will help implement mitochondrial respiration as a standard for T cell fitness in monitoring and studying cancer immunotherapies.


Asunto(s)
Citocinas , Mitocondrias , Respiración de la Célula , Citocinas/metabolismo , Humanos , Mitocondrias/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Respiración
8.
Cancers (Basel) ; 13(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801886

RESUMEN

Tyro3, Axl and MerTK (TAM) receptors are receptor tyrosine kinases which play important roles in efferocytosis and in the balancing of immune responses and inflammation. TAM receptor activation is induced upon binding of the ligands protein S (Pros1) or growth arrest-specific protein 6 (Gas6) which act as bridging molecules for binding of phosphatidyl serine (PtdSer) exposed on apoptotic cell membranes. Upon clearance of apoptotic cell material, TAM receptor activation on innate cells suppresses proinflammatory functions, thereby ensuring the immunologically silent removal of apoptotic material in the absence of deleterious immune responses. However, in T cells, MerTK signaling is costimulatory and promotes activation and functional output of the cell. MerTK and Axl are also aberrantly expressed in a range of both hematological and solid tumor malignancies, including breast, lung, melanoma and acute myeloid leukemia, where they have a role in oncogenic signaling. Consequently, TAM receptors are being investigated as therapeutic targets using small molecule inhibitors and have already demonstrated efficacy in mouse tumor models. Thus, inhibition of TAM signaling in cancer cells could have therapeutic value but given the opposing roles of TAM signaling in innate cells and T cells, TAM inhibition could also jeopardize anticancer immune responses. This conflict is discussed in this review, describing the effects of TAM inhibition on cancer cells as well as immune cells, while also examining the intricate interplay of cancer and immune cells in the tumor microenvironment.

9.
Cancer Immunol Immunother ; 69(2): 237-244, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31664482

RESUMEN

The TAM receptors-TYRO3, AXL, MERTK-are pleiotropically expressed receptors in both healthy and diseased tissue. A complex of the ligands Protein S (PROS1) or Growth Arrest-Specific 6 (GAS6) with apoptotic phosphatidylserine activates the TAM receptors. Hence, this receptor family is essential for the efferocytosis of apoptotic material by antigen-presenting cells. In addition, TAM receptors are expressed by virtually all cells of the tumor microenvironment. They are also potent oncogenes, frequently overexpressed in cancer and involved in survival and therapy resistance. Due to their pro-oncogenic and immune-inhibitory traits, TAM receptors have emerged as promising targets for cancer therapy. Recently, TAM receptors have been described to function as costimulatory molecules on human T cells. TAM receptors' ambivalent functions on many different cell types therefore make therapeutic targeting not straight-forward. In this review we summarize our current knowledge of the function of TAM receptors in the tumor microenvironment. We place particular focus on TAM receptors and the recently unraveled role of MERTK in activated T cells and potential consequences for anti-tumor immunity.


Asunto(s)
Neoplasias/etiología , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral/inmunología , Tirosina Quinasa c-Mer/metabolismo , Animales , Antineoplásicos/farmacología , Biomarcadores , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa del Receptor Axl
10.
Cancer Immunol Res ; 7(9): 1472-1484, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31266785

RESUMEN

The TAM family of receptor tyrosine kinases (TYRO3, AXL, and MERTK) is known to be expressed on antigen-presenting cells and function as oncogenic drivers and as inhibitors of inflammatory responses. Both human and mouse CD8+ T cells are thought to be negative for TAM receptor expression. In this study, we show that T-cell receptor (TCR)-activated human primary CD8+ T cells expressed MERTK and the ligand PROS1 from day 2 postactivation. PROS1-mediated MERTK signaling served as a late costimulatory signal, increasing proliferation and secretion of effector and memory-associated cytokines. Knockdown and inhibition studies confirmed that this costimulatory effect was mediated through MERTK. Transcriptomic and metabolic analyses of PROS1-blocked CD8+ T cells demonstrated a role of the PROS1-MERTK axis in differentiation of memory CD8+ T cells. Finally, using tumor-infiltrating lymphocytes (TIL) from melanoma patients, we show that MERTK signaling on T cells improved TIL expansion and TIL-mediated autologous cancer cell killing. We conclude that MERTK serves as a late costimulatory signal for CD8+ T cells. Identification of this costimulatory function of MERTK on human CD8+ T cells suggests caution in the development of MERTK inhibitors for hematologic or solid cancer treatment.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Tirosina Quinasa c-Mer/metabolismo , Biomarcadores , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Citocinas/metabolismo , Metabolismo Energético , Expresión Génica , Humanos , Inmunofenotipificación , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor , Melanoma/genética , Melanoma/inmunología , Melanoma/metabolismo , Melanoma/patología , Proteína S , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
11.
Front Immunol ; 8: 419, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28458667

RESUMEN

For protection against pathogens, it is essential that naïve CD4+ T cells differentiate into specific effector T helper (Th) cell subsets following activation by antigen presented by dendritic cells (DCs). Next to T cell receptor and cytokine signals, membrane-bound Notch ligands have an important role in orchestrating Th cell differentiation. Several studies provided evidence that DC activation is accompanied by surface expression of Notch ligands. Intriguingly, DCs that express the delta-like or Jagged Notch ligands gain the capacity to instruct Th1 or Th2 cell polarization, respectively. However, in contrast to this model it has also been hypothesized that Notch signaling acts as a general amplifier of Th cell responses rather than an instructive director of specific T cell fates. In this alternative model, Notch enhances proliferation, cytokine production, and anti-apoptotic signals or promotes co-stimulatory signals in T cells. An instructive role for Notch ligand expressing DCs in the induction of Th cell differentiation is further challenged by evidence for the involvement of Notch signaling in differentiation of Th9, Th17, regulatory T cells, and follicular Th cells. In this review, we will discuss the two opposing models, referred to as the "instructive" and the "unbiased amplifier" model. We highlight both the function of different Notch receptors on CD4+ T cells and the impact of Notch ligands on antigen-presenting cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA