Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 224: 588-599, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270945

RESUMEN

Neutrophils orchestrate a coordinated attack on bacteria, combining phagocytosis with a potent cocktail of oxidants, including the highly toxic hypochlorous acid (HOCl), renowned for its deleterious effects on proteins. Here, we examined the occurrence of lipid N-chloramines in vivo, their biological activity, and their neutralization. Using a chemical probe for N-chloramines, we demonstrate their formation in the membranes of bacteria and monocytic cells exposed to physiologically relevant concentrations of HOCl. N-chlorinated model membranes composed of phosphatidylethanolamine, the major membrane lipid in Escherichia coli and an important component of eukaryotic membranes, exhibited oxidative activity towards the redox-sensitive protein roGFP2, suggesting a role for lipid N-chloramines in protein oxidation. Conversely, glutathione a cellular antioxidant neutralized lipid N-chloramines by removing the chlorine moiety. In line with that, N-chloramine stability was drastically decreased in bacterial cells compared to model membranes. We propose that lipid N-chloramines, like protein N-chloramines, are involved in inflammation and accelerate the host immune response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA