RESUMEN
Post-partum depression (PPD) with varying clinical manifestations affecting new parents remains underdiagnosed and poorly treated. This minireview revisits the pharmacotherapy, and relevant etiological basis, capable of advancing preclinical research frameworks. Maternal tasks accompanied by numerous behavioral readouts demand modeling different paradigms that reflect the complex and heterogenous nature of PPD. Hence, effective PPD-like characterization in animals towards the discovery of pharmacological intervention demands research that deepens our understanding of the roles of hormonal and non-hormonal components and mediators of this psychiatric disorder.
RESUMEN
LQFM018 is a novel antineoplastic prototype, showing an expressive drug-triggered K562 leukemic cells death mechanism, through necroptotic signaling. Due to its promising effect, this study aimed to evaluate the pharmacokinetics of LQFM018 in rats, using a new validated bioanalytical LC-MS/MS-based method. Chromatographic column was an ACE® C18 (100 mm × 4.6 mm, 5 µm) eluted by a mobile phase composed of ammonium acetate 2 mM and formic acid 0.025%:methanol (50:50, v/v), under flow of 1.2 mL/min and injection volume of 3.0 µL. LQFM018 was extracted from rat plasma by a simple liquid-liquid method, using MTBE solvent. Rats were administered intraperitoneally at LQFM018 100 mg/kg dose and blood samples were collect at times of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 h. Bioanalytical-LC-MS/MS-based method was rapid, high throughput and sensitive with a good linearity ranging from 10 (LLOQ) to 15000 ng/mL, besides precise and accurate, ranging of 0.8-7.3% and 96.8-107.6%, respectively. The prototype LQFM018 was rapid and well absorbed, and highly distributed, apparently due to its high lipid solubility. These features are primordial for an anticancer agent in the treatment of deep tumors, such as bone marrow neoplasms, in which the drug might permeate easily tissue barriers. Also, LQFM018 has demonstrated a high clearance, according to a low t1/2in rats, indicating a relative fast elimination phase related to a possible intense hepatic biotransformation. These information support further studies to establish new understands on pharmacokinetics of promising antineoplastic prototype LQFM018 from preclinical and clinical evaluations.
Asunto(s)
Antineoplásicos , Espectrometría de Masas en Tándem , Ratas , Animales , Cromatografía Liquida/métodos , Piperazina , Espectrometría de Masas en Tándem/métodos , Piperazinas , Reproducibilidad de los ResultadosRESUMEN
AIMS: Diminazene aceturate, a putative ACE2 activator, is susceptible to cleavage resulting in the formation of p-aminobenzamidine (PAB). This study aimed to investigate the effects of PAB in addressing cardiovascular dysfunctions in spontaneously hypertensive rats (SHR). MAIN METHODS: Acute effects of PAB on mean arterial pressure (MAP), heart rate (HR), and aortic (AVC) and mesenteric vascular conductance (MVC) were evaluated in anesthetized SHR. Isolated aortic rings and the Langendorff technique were used to investigate the acute and chronic effects of PAB in the artery and heart. Chronic treatment with PAB (1 mg/kg, gavage) was carried out for 60 days. During this period, systolic blood pressure (SBP) and HR were measured by tail-cuff plethysmography. After the treatment, the left ventricle was collected for histology analyses, western blotting, and ACE2 activity. KEY FINDINGS: Bolus infusion of PAB acutely reduced MAP and increased both AVC and MVC in SHR. Additionally, PAB induced coronary and aorta vasodilation in isolated organs from Wistar and SHR in an endothelial-dependent manner. The chronic PAB treatment in SHR significantly attenuated the increase of SBP and improved the aorta vasorelaxation induced by acetylcholine and bradykinin-induced coronary vasodilation. In addition, chronic treatment with PAB attenuated the cardiomyocyte hypertrophy and extracellular matrix deposition in hearts from SHR. PAB did not alter the protein expression of the AT1, AT2, Mas, ACE, ACE2, or ACE2 activity. SIGNIFICANCE: PAB induced beneficial effects on cardiovascular dysfunctions induced by hypertension, suggesting that this molecule could be used in the development of new drugs for the treatment of cardiovascular diseases.
Asunto(s)
Enzima Convertidora de Angiotensina 2 , Hipertensión , Animales , Benzamidinas , Presión Sanguínea , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Ratas , Ratas Endogámicas SHR , Ratas Wistar , VasodilataciónRESUMEN
This work aimed to investigate the effects of early progeny exposure to methylglyoxal (MG), programming for metabolic dysfunction and diabetes-like complications later in life. At delivery (PN1), the animals were separated into two groups: control group (CO), treated with saline, and MG group, treated with MG (20 mg/kg of BW; i.p.) during the first 2 weeks of the lactation period. In vivo experiments and tissue collection were done at PN90. Early MG exposure decreased body weight, adipose tissue, liver and kidney weight at adulthood. On the other hand, MG group showed increased relative food intake, blood fructosamine, blood insulin and HOMA-IR, which is correlated with insulin resistance. Besides, MG-treated animals presented dyslipidaemia, increased oxidative stress and inflammation. Likewise, MG group showed steatosis and perivascular fibrosis in the liver, pancreatic islet hypertrophy, increased glomerular area and pericapsular fibrosis, but reduced capsular space. This study shows that early postnatal exposure to MG induces oxidative stress, inflammation and fibrosis markers in pancreas, liver and kidney, which are related to metabolic dysfunction features. Thus, nutritional disruptors during lactation period may be an important risk factor for metabolic alterations at adulthood.
Asunto(s)
Estrés Oxidativo , Piruvaldehído , Animales , Femenino , Fibrosis , Inflamación/inducido químicamente , Piruvaldehído/toxicidad , Ratas , Ratas WistarRESUMEN
The effects of the renin-angiotensin system (RAS) on stem cells isolated from human dental apical papilla (SCAPs) are completely unknown. Therefore, the aim of this study was to identify RAS components expressed in SCAPs and the effects of angiotensin (Ang) II and Ang-(1-7) on cell proliferation. SCAPs were collected from third molar teeth of adolescents and maintained in cell culture. Messenger RNA expression and protein levels of angiotensin-converting enzyme (ACE), ACE2, and Mas, Ang II type I (AT1) and type II (AT2) receptors were detected in SCAPs. Treatment with either Ang II or Ang-(1-7) increased the proliferation of SCAPs. These effects were inhibited by PD123319, an AT2 antagonist. While Ang II augmented mTOR phosphorylation, Ang-(1-7) induced ERK1/2 phosphorylation. In conclusion, SCAPs produce the main RAS components and both Ang II and Ang-(1-7) treatments induced cell proliferation mediated by AT2 activation through different intracellular mechanisms.
Asunto(s)
Angiotensina II/farmacología , Angiotensina I/farmacología , Proliferación Celular/efectos de los fármacos , Papila Dental/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Células Madre/efectos de los fármacos , Adolescente , Células Cultivadas , Papila Dental/metabolismo , Femenino , Humanos , Imidazoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Peptidil-Dipeptidasa A/metabolismo , Fosforilación/efectos de los fármacos , Piridinas/farmacología , ARN Mensajero/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Células Madre/metabolismoRESUMEN
Mastoparan-L (mast-L) is a cell-penetrating tetradecapeptide and stimulator of monoamine exocytosis. In the present study, we evaluated the anxiolytic-like effect of mast-L. Preliminary pharmacological tests were conducted to determine the most appropriate route of administration, extrapolate dose and detect potential toxic effects of this peptide. Oral and intracerebroventricular administration of mast-L (0.1, 0.3 or 0.9 mg.kg-1), diazepam (1 or 5 mg.kg-1), buspirone (10 mg.kg-1) or vehicle 10 mL.kg-1 was carried out prior to the exposure of mice to the anxiety models: open field, light-dark box and elevated plus-maze. To characterize the mechanism underlying the antianxiety-like effect of mast-L, pharmacological antagonism, blood plasma analysis, molecular docking, and receptor binding assays were performed. The absence of a neurotoxic sign, animal's death as well as lack of significant changes in the relative organ weight, hematological and biochemical parameters suggest that mast-L is relatively safe. The anxiolytic-like effect of mast-L was attenuated by flumazenil (antagonist of benzodiazepine binding site) and WAY100635 (selective antagonist of 5-HT1A receptors) pretreatments. Mast-L reduced plasma corticosterone and lowered the scoring function at GABAA -18.48 kcal/mol (Ki = 155 nM), 5-HT1A -22.39 kcal/mol (Ki = 130 nM), corticotropin-releasing factor receptor subtype 1 (CRF1) -11.95 kcal/mol (Ki = 299 nM) and glucocorticoid receptors (GR) -14.69 kcal/mol (Ki = 3552 nM). These data fit the binding affinity (Ki) and demonstrate the involvement of gabaergic, serotonergic and glucocorticoid mechanisms in the anxiolytic-like property of mast-L.
Asunto(s)
Ansiolíticos/administración & dosificación , Ansiolíticos/farmacología , Ansiedad/metabolismo , Glucocorticoides/metabolismo , Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , Péptidos y Proteínas de Señalización Intercelular/farmacología , Serotonina/metabolismo , Venenos de Avispas/administración & dosificación , Venenos de Avispas/farmacología , Ácido gamma-Aminobutírico/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Femenino , Masculino , Ratones , Receptor de Serotonina 5-HT1A/metabolismo , Receptores de GABA-A/metabolismoRESUMEN
The two kidney-one clip (2K1C) renovascular hypertension depends on the renin-angiotensin system and sympathetic overactivity. The maintenance of 2K1C hypertension also depends on inputs from the carotid bodies (CB), which when activated stimulate the respiratory activity. In the present study, we investigated the importance of CB afferent activity for the ventilatory responses in 2K1C hypertensive rats and for phrenic and hypoglossal activities in in situ preparations of normotensive rats treated with angiotensin II. Silver clips were implanted around the left renal artery of male Holtzman rats (150 g) to induce renovascular hypertension. Six weeks after clipping, hypertensive 2K1C rats showed, in conscious state, elevated resting tidal volume and minute ventilation compared with the normotensive group. 2K1C rats also presented arterial alkalosis, urinary acidification, and amplified hypoxic ventilatory response. Carotid body removal (CBR), 2 wk before the experiments (4th week after clipping), significantly reduced arterial pressure and pulmonary ventilation in 2K1C rats but not in normotensive rats. Intra-arterial administration of angiotensin II in the in situ preparation of normotensive rats increased phrenic and hypoglossal activities, responses that were also reduced after CBR. Results show that renovascular hypertensive rats exhibit increased resting ventilation that depends on CB inputs. Similarly, angiotensin II increases phrenic and hypoglossal activities in in situ preparations of normotensive rats, responses that also depend on CB inputs. Results suggest that mechanisms that depend on CB inputs in renovascular hypertensive rats or during angiotensin II administration in normotensive animals increase respiratory drive.
Asunto(s)
Cuerpo Carotídeo/fisiología , Hipertensión Renovascular/fisiopatología , Ratas Sprague-Dawley , Angiotensina II/administración & dosificación , Angiotensina II/farmacología , Animales , Nervio Hipogloso/fisiología , Masculino , Fenilefrina/administración & dosificación , Fenilefrina/farmacología , Nervio Frénico/fisiología , Ratas , Sistema Nervioso Simpático , Simpatomiméticos/farmacologíaRESUMEN
The aim of this study was to investigate whether treatment with diminazene aceturate (DIZE), a putative ACE2 activator, or with angiotensin-(1-7) during pregnancy could attenuate the development of cardiovascular dysfunction in the adult offspring of spontaneously hypertensive rats (SHRs). For this, pregnant SHRs received DIZE or Ang-(1-7) throughout gestation. The systolic blood pressure (SBP) was measured in the male offspring from the 6th to16th weeks of age by tail-cuff plethysmography. Thereafter, the left ventricular contractile function and coronary reactivity were evaluated by the Langendorff technique. Samples of the left ventricles (LVs) and kidneys were collected for histology and western blot assay in another batch of adult rat offspring. Maternal treatment with DIZE or Ang-(1-7) during pregnancy attenuated the increase in SBP in adult offspring. In addition, both DIZE and Ang-(1-7) treatments reduced the cardiomyocyte diameter and fibrosis deposition in the LV, and treatment with Ang-(1-7) also reduced the fibrosis deposition in the kidneys. Maternal treatment with DIZE, as well as Ang-(1-7), improved the coronary vasodilation induced by bradykinin in isolated hearts from adult offspring. However, no difference was observed in the contractile function of the LVs of these animals. The expression levels of AT1 and Mas receptors, ACE, ACE2, SOD, and catalase in the LV were not modified by maternal treatment with Ang-(1-7), but this treatment elicited a reduction in AT2 expression. These data show that treatment with DIZE or Ang-(1-7) during gestation promoted beneficial effects of attenuating hypertension and cardiac remodeling in adult offspring.
Asunto(s)
Angiotensina I/farmacología , Enfermedades Cardiovasculares/prevención & control , Diminazeno/análogos & derivados , Activadores de Enzimas/farmacología , Hipertensión Inducida en el Embarazo/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Peptidil-Dipeptidasa A/efectos de los fármacos , Enzima Convertidora de Angiotensina 2 , Animales , Presión Sanguínea/efectos de los fármacos , Diminazeno/farmacología , Femenino , Corazón/efectos de los fármacos , Riñón/efectos de los fármacos , Masculino , Contracción Miocárdica , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Función Ventricular IzquierdaRESUMEN
BACKGROUND: Systemic arterial hypertension (SAH) is a multifactorial condition that already affects one third of the worldwide population. The identification of candidate genes for hypertension is a challenge for the next years. Nevertheless, the small contribution of each individual genetic factor to the disease brings the necessity of evaluate genes in an integrative manner and taking into consideration the physiological interaction of functions. Angiotensin I-converting enzymes, ACE and ACE2, are key regulators of blood pressure that have counterbalance roles by acting on vasoactive peptides from Renin-Angiotensin-Aldosterone System (RAAS). Insertion/deletion (I/D) polymorphism of ACE gene and single nucleotide polymorphism G8790A of ACE2 gene have been associated with susceptibility to SAH, but the literature is controversial. We proposed to evaluate these two polymorphisms jointly exploring the combined effects of ACE and ACE2 genotypes on SAH susceptibility, an approach that have not been done yet for ACE and ACE2 polymorphisms. METHODS AND FINDINGS: This genetic association study included 117 hypertensive (mean age 59.7 years) patients and 123 normotensive and diabetes-free controls (mean age 57.5 years). ACE and ACE2 polymorphisms were genotyped by SYBR Green real-time PCR and RFLP-PCR, respectively. Crude and adjusted odds ratio (OR) values were calculated to estimate the susceptibility to SAH development. It was obtained homogeneity regarding distribution by sex, age range, smoking, alcohol consumption and body mass index (BMI) between case and control groups. No-association was verified for each gene individually, but the combination of ACE and ACE2 polymorphisms on female gender revealed a significative association for DD/G_ carriers who had a 3-fold increased risk to SAH development (p = 0.03), with a stronger susceptibility on DD/GG carriers (7-fold increased risk, p = 0.01). The D allele of ACE showed association with altered levels of lipid profile variables on case group (VLDL-cholesterol, p = 0.01) and DD genotype in all individuals analysis (triglycerides, p = 0.01 and VLDL-cholesterol, p = 0.01). CONCLUSION: These findings indicate that the combination of ACE and ACE2 polymorphisms effects may play a role in SAH predisposition been the DD/G_ genotype the susceptibility profile. This result allowed us to raise the hypothesis that an increased activity of ACE (prohypertensive effects) in conjunction with reduced ACE2 activity (antihypertensive effects) could be the underlining mechanism. The association of ACE D allele with lipid alterations indicate that this can be a marker of poor prognostic on SAH evolution and contribute to CVD development. Although these preliminary findings must be confirmed by further researches with larger sample size, we could observe that the integrative analysis of ACE and ACE2 can be an informative tool in hypertension understanding that needs to be explored in new studies.
Asunto(s)
Dislipidemias/epidemiología , Predisposición Genética a la Enfermedad , Hipertensión/genética , Peptidil-Dipeptidasa A/genética , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Alelos , Enzima Convertidora de Angiotensina 2 , Presión Sanguínea/genética , Brasil/epidemiología , Estudios de Casos y Controles , Dislipidemias/genética , Femenino , Estudios de Seguimiento , Frecuencia de los Genes , Estudios de Asociación Genética , Humanos , Hipertensión/epidemiología , Mutación INDEL , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Factores Sexuales , Adulto JovenRESUMEN
The search for new drugs remains an important focus for the safe and effective treatment of cardiovascular diseases. Previous evidence has shown that choline analogs can offer therapeutic benefit for cardiovascular complications. The current study investigates the effects of 2-(4-((1-phenyl-1H-pyrazol-4-yl)methyl)piperazin-1-yl)ethan-1-ol (LQFM032) on cardiovascular function and cholinergic-nitric oxide signaling. Synthesized LQFM032 (0.3, 0.6, or 1.2 mg/kg) was administered by intravenous and intracerebroventricular routes to evaluate the potential alteration of mean arterial pressure, heart rate, and renal sympathetic nerve activity of normotensive and hypertensive rats. Vascular function was further evaluated in isolated vessels, while pharmacological antagonists and computational studies of nitric oxide synthase and muscarinic receptors were performed to assess possible mechanisms of LQFM032 activity. The intravenous and intracerebroventricular administration of LQFM032 elicited a temporal reduction in mean arterial pressure, heart rate, and renal sympathetic nerve activity of rats. The cumulative addition of LQFM032 to isolated endothelium-intact aortic rings reduced vascular tension and elicited a concentration-dependent relaxation. Intravenous pretreatment with L-NAME (nitric oxide synthase inhibitor), atropine (nonselective muscarinic receptor antagonist), pirenzepine, and 4-DAMP (muscarinic M1 and M3 subtype receptor antagonist, respectively) attenuated the cardiovascular effects of LQFM032. These changes may be due to a direct regulation of muscarinic signaling as docking data shows an interaction of choline analog with M1 and M3 but not nitric oxide synthase. Together, these findings demonstrate sympathoinhibitory, hypotensive, and antihypertensive effects of LQFM032 and suggest the involvement of muscarinic receptors.
Asunto(s)
Antihipertensivos/farmacología , Hipotensión/fisiopatología , Piperazinas/farmacología , Pirazoles/farmacología , Receptor Muscarínico M1/fisiología , Receptor Muscarínico M3/fisiología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/fisiología , Atropina/farmacología , Presión Sanguínea/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Hipertensión/inducido químicamente , Masculino , Antagonistas Muscarínicos/farmacología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Piperidinas/farmacología , Pirenzepina/farmacología , Ratas Endogámicas SHR , Ratas WistarRESUMEN
BACKGROUND: Mothers of preterm infants often have symptoms of anxiety and depression, recognized as risk factors for the development of cardiovascular diseases and associated with low rates of heart rate variability (HRV). This study aimed to evaluate the influence of music therapy intervention on the autonomic control of heart rate, anxiety, and depression in mothers. METHODS: Prospective randomized clinical trial including 21 mothers of preterms admitted to the Neonatal Intensive Care Unit of a tertiary hospital, recruited from August 2015 to September 2017, and divided into control group (CG; n = 11) and music therapy group (MTG; n = 10). Participants underwent anxiety and depression evaluation, as well as measurements of the intervals between consecutive heartbeats or RR intervals for the analysis of HRV at the first and the last weeks of hospitalization of their preterms. Music therapy sessions lasting 30-45 min were individually delivered weekly using receptive techniques. The mean and standard deviation of variables were obtained and the normality of data was analyzed using the Kolmogorov-Smirnov test. The paired sample t-test or Wilcoxon test were employed to calculate the differences between variables before and after music therapy intervention. The correlations anxiety versus heart variables and depression versus heart variables were established using Spearman correlation test. Fisher's exact test was used to verify the differences between categorical variables. A significance level of p < 0.05 was established. Statistical analysis were performed using the Statistical Package for the Social Sciences, version 20. RESULTS: Participants in MTG had an average of seven sessions of music therapy, and showed improvement in anxiety and depression scores and autonomic indexes of the time domain (p < 0.05). Significant correlations were found between depression and parasympathetic modulation using linear (r = - 0.687; p = 0.028) and nonlinear analyses (r = - 0.689; p = 0.027) in MTG. CONCLUSION: Music therapy had a significant and positive impact on anxiety and depression, acting on prevention of cardiovascular diseases, major threats to modern society. TRIAL REGISTRATION: Brazilian Registry of Clinical Trials (no. RBR-3x7gz8 ). Retrospectively registered on November 17, 2017.
Asunto(s)
Ansiedad/terapia , Depresión Posparto/psicología , Depresión Posparto/terapia , Recien Nacido Prematuro/psicología , Madres/psicología , Musicoterapia/métodos , Adulto , Ansiedad/psicología , Trastornos de Ansiedad , Femenino , Frecuencia Cardíaca , Humanos , Lactante , Recién Nacido , Bienestar Materno/psicología , Estudios ProspectivosRESUMEN
The search for new antihypertensive drugs has grown in recent years because of high rate of morbidity among hypertensive patients and several side effects that are associated with the first-line medications. The current study sought to investigate the antihypertensive effect of a newly synthesized pyrazole derivative known as 5-(1-(3 fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM-21). Spontaneously hypertensive rats (SHR) were used to evaluate the effect of LQFM-21 on mean arterial pressure (MAP), heart rate (HR), renal vascular conductance (RVC), arterial vascular conductance (AVC), baroreflex sensitivity (BRS) index, and vascular reactivity. Acute intravenous (iv) administration of LQFM-21 (0.05, 0.1, 0.2, and 0.4 mg kg-1) reduced MAP and HR, and increased RVC and AVC. Chronic oral administration of LQFM-21 (15 mg kg-1) for 15 days reduced MAP without altering BRS. The blockade of muscarinic receptors and nitric oxide synthase by intravenous infusion of atropine and L-NAME, respectively, attenuated cardiovascular effects of LQFM-21. In addition, ex vivo experiments showed that LQFM-21 induced an endothelium-dependent relaxation in isolated aortic rings from SHR. This effect was blocked by guanylyl cyclase inhibitor (ODQ) and L-NAME. These findings suggest the involvement of muscarinic receptor and NO/cGMP pathway in the antihypertensive and vasodilator effects of LQFM-21.
RESUMEN
Sympathetic premotor neurons of the paraventricular hypothalamus (PVN) play a role in hemodynamics adjustments during changes in body fluid homeostasis. However, PVN contribution to the tonic control of cardiac function remains to be systematically studied. In this study, we assessed whether GABAergic and adrenergic synapses, known for being active in the PVN, are involved in the control of cardiac function. Adult male Wistar rats (250-350 g; n = 27) were anesthetized with urethane (1.2-1.4 g/kg i.p.) and underwent catheterization of femoral artery to record blood pressure and heart rate. The femoral vein was used to inject the vasoactive agents phenylephrine (10 µg/kg) and sodium nitroprusside (10 µg/kg) and to supplement anesthesia. The cardiac left ventricle was catheterized to record left ventricular pressure and its derivative. Craniotomy allowed for injections (100 nL) into the PVN of: muscimol (20 mM), bicuculline methiodide (0.4 mM), propranolol (10 mM), isoproterenol (100 µM), phentolamine (13 mM), phenylephrine (30 nM). We found that: (i) inhibition of PVN by muscimol, reduced arterial pressure, cardiac chronotropy and inotropy; (ii) disinhibition of PVN neurons by bicuculline evoked positive chronotropy and inotropy, and increase blood pressure; (iii) PVN alpha adrenergic receptors control cardiac chronotropy and inotropy; (iv) beta adrenergic receptors of the PVN do not influence cardiac function; (v) afterload does not contribute to the PVN-evoked inotropy. Our results indicate that the modulation of the activity of PVN neurons exerted by GABAergic and adrenergic mechanisms contribute to the control of cardiac function.
RESUMEN
The crucial role of the median preoptic nucleus (MnPO) in the maintenance of hydroelectrolytic balance and autonomic regulation have been highlighted. Recently, the participation of the MnPO in the control of sympathetic nerve activity was demonstrated in essential hypertension model. However, peculiarities on the neurochemical changes underlying the differential role of MnPO during hypertension remain to be clarified. Therefore, this study aimed to investigate the main excitatory pathways that modulate MnPO neurons in hypertensive rats. Spontaneously hypertensive rats (SHR) and rats submitted previously to the Goldblatt protocol (two kidneys; one clip; 2K1C) were used. Rats of both groups (250 to 350 g, n = 6) were anesthetized with urethane (1.2 g/kg,i.v.) and instrumented to record mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA). Nanoinjection (100 nl) of saline (NaCl, 150 mM), losartan (AT1 receptor antagonist; 10 mM) and kynurenic acid (glutamate receptor antagonist; 50 mM) into the MnPO were performed. In 2K1C rats, glutamatergic blockade promoted decreases in MAP and RSNA (-19.1 ± 0.9 mmHg, -21.6 ± 2.8%, p < 0.05) when compared to saline (-0.4 ± 0.6 mmHg, 0.2 ± 0.7%, p < 0.05). Angiotensinergic inhibition also reduced these parameters (-11.5 ± 1.2 mmHg, -10.5 ± 1.0%, p < 0.05) in 2K1C. In SHR, Kynurenic acid nanoinjections produced hypotension and sympathoinhibition (-21.0 ± 2.5 mmHg, -24.7 ± 2.4%, p < 0.05), as well losartan nanoinjections (-9.7 ± 1.2 mmHg; p < 0.05) and RSNA (-12.0 ± 2.4%, p < 0.05). These findings support the conclusion that a tonic excitatory neurotransmission exerted by angiotensin II, and mostly by glutamate in the MnPO could participate in the modulation of blood pressure and RSNA independent on whether hypertension is primarily neurogenic or is secondary to stenosis in renal artery.
Asunto(s)
Angiotensina II/metabolismo , Ácido Glutámico/metabolismo , Hipertensión/metabolismo , Área Preóptica/metabolismo , Receptores de Neurotransmisores/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Ratas Endogámicas SHR , Ratas WistarRESUMEN
Exposure to chronic sustained hypoxia (SH), as experienced in high altitudes, elicits an increase in ventilation, named ventilatory acclimatization to hypoxia (VAH). We previously showed that rats exposed to short-term (24 h) SH exhibit enhanced abdominal expiratory motor activity at rest, accompanied by augmented baseline sympathetic vasoconstrictor activity. In the present study, we investigated whether the respiratory and sympathetic changes elicited by short-term SH are accompanied by carotid body chemoreceptor sensitization. Juvenile male Holtzman rats (60-80 g) were exposed to SH (10% O2 for 24 h) or normoxia (control) to examine basal and hypoxic-induced ventilatory parameters in unanesthetized conditions, as well as the sensory response of carotid body chemoreceptors in artificially perfused in situ preparations. Under resting conditions (normoxia/normocapnia), SH rats (n = 12) exhibited higher baseline respiratory frequency, tidal volume, and minute ventilation compared to controls (n = 11, P < 0.05). SH group also showed greater hypoxia ventilatory response than control group (P < 0.05). The in situ preparations of SH rats (n = 8) exhibited augmented baseline expiratory and sympathetic activities under normocapnia, with additional bursts in abdominal and thoracic sympathetic nerves during late expiratory phase that were not seen in controls (n = 8, P < 0.05). Interestingly, basal and potassium cyanide-induced afferent activity of carotid sinus nerve (CSN) was similar between SH and control rats. Our findings indicate that the maintenance of elevated resting ventilation, baseline sympathetic overactivity, and enhanced ventilatory responses to hypoxia in rats exposed to 24 h of SH are not dependent on increased basal and sensorial activity of carotid body chemoreceptors.
RESUMEN
Objective: To test whether women with metabolic syndrome (MS) have impairments in the on- and off-transients during an incremental test and to study whether any of the MS components are independently associated with the observed responses. Research Design and Methods: Thirty-six women aged 35-55 years were divided into a group with MS (MSG, n = 19) and a control group (CG, n = 17). R-R intervals (RRi) and heart rate variability (HRV) were calculated on a beat-to-beat basis and the heart rate (HR) at the on- and off-transient were analyzed during an incremental cardiopulmonary exercise test (CPET). Results: MSG showed lower aerobic capacity and lower parasympathetic cardiac modulation at rest compared with CG. HR values in on-transient phase were significantly lower in MSG compared with CG. The exponential amplitudes "amp" and the parameters "τ" [speed of heart rate recovery (HRR)] were lower in MSG. MSG exhibited higher HR values in comparison to CG during the off-transient indicating a slower HRR. In MSG, there was an inverse and significant correlation between fasting plasma vs. ΔF and glucose vs. exponential "τ" of HRR dynamics. Conclusion: MS is associated with poor heart rate kinetics. The altered HR kinetics seems to be related to alterations in cardiac parasympathetic modulation, and glucose metabolism seems to be the major determinant.
RESUMEN
Intrathecal injection of bombesin (BBS) promoted hypertensive and sympathoexcitatory effects in normotensive (NT) rats. However, the involvement of rostral ventrolateral medulla (RVLM) in these responses is still unclear. In the present study, we investigated: (1) the effects of BBS injected bilaterally into RVLM on cardiorespiratory and sympathetic activity in NT and spontaneously hypertensive rats (SHR); (2) the contribution of RVLM BBS type 1 receptors (BB1) to the maintenance of hypertension in SHR. Urethane-anesthetized rats (1.2 g · kg(-1), i.v.) were instrumented to record mean arterial pressure (MAP), diaphragm (DIA) motor, and renal sympathetic nerve activity (RSNA). In NT rats and SHR, BBS (0.3 mM) nanoinjected into RVLM increased MAP (33.9 ± 6.6 and 37.1 ± 4.5 mmHg, respectively; p < 0.05) and RSNA (97.8 ± 12.9 and 84.5 ± 18.1%, respectively; p < 0.05). In SHR, BBS also increased DIA burst amplitude (115.3 ± 22.7%; p < 0.05). BB1 receptors antagonist (BIM-23127; 3 mM) reduced MAP (-19.9 ± 4.4 mmHg; p < 0.05) and RSNA (-17.7 ± 3.8%; p < 0.05) in SHR, but not in NT rats (-2.5 ± 2.8 mmHg; -2.7 ± 5.6%, respectively). These results show that BBS can evoke sympathoexcitatory and pressor responses by activating RVLM BB1 receptors. This pathway might be involved in the maintenance of high levels of arterial blood pressure in SHR.
RESUMEN
The present study sought to determine the involvement of median preoptic nucleus (MnPO) in the regulation of the cardiovascular function and renal sympathetic activity in normotensive (NT) and spontaneously hypertensive rats (SHR). MnPO inhibition evoked by Muscimol (4mM) nanoinjections, elicited fall in MAP and renal sympathoinhibition in NT-rats. Surprisingly, in SHRs these responses were greater than in NT-rats. These results demonstrated, for the first time that MnPO was involved in the tonic control of sympathetic activity in NT and SHRs. Furthermore, our data suggest the MnPO involvement in the increased sympathetic outflow and consequent arterial hypertension observed in SHRs.
Asunto(s)
Área Preóptica/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Animales , Presión Sanguínea/efectos de los fármacos , Electrocardiografía/efectos de los fármacos , Inyecciones Intraventriculares , Masculino , Microinyecciones , Muscimol/farmacología , Inhibición Neural/efectos de los fármacos , Área Preóptica/efectos de los fármacos , Ratas , Ratas Endogámicas SHRRESUMEN
Despite the abundance of evidence that supports the important role of aortic and carotid afferents to short-term regulation of blood pressure and detection of variation in the arterial PO2 , PCO2 and pH, relatively little is known regarding the role of these afferents during changes in the volume and composition of extracellular compartments. The present study sought to determine the involvement of these afferents in the renal vasodilation and sympathoinhibition induced by hypertonic saline (HS) infusion. Sinoaortic-denervated and sham male Wistar rats were anaesthetised with intravenous (i.v.) urethane (1.2 g/kg body weight (bw)) prior to the measurement of the mean arterial pressure (MAP), renal vascular conductance (RVC) and renal sympathetic nerve activity (RSNA). In the sham group, the HS infusion (3 mol/L NaCl, 1.8 mL/kg bw, i.v.) induced transient hypertension (12 ± 4 mmHg from baseline, peak at 10 min; P < 0.05), an increase in RVC (127 ± 9% and 150 ± 13% from baseline, at 20 and 60 min respectively; P < 0.05) and a decrease in RSNA (-34 ± 10% and -29 ± 5% from baseline, at 10 and 60 min respectively; P < 0.05). In sinoaortic-denervated rats, HS infusion promoted a sustained pressor response (30 ± 5 and 17 ± 6 mmHg of baseline values, at 10 and 30 min respectively; P < 0.05) and abolished the increase in RVC (85 ± 8% from baseline, at 10 min) and decrease in RSNA (-4 ± 3% from baseline, at 10 min). These results suggest that aortic and carotid afferents are involved in cardiovascular and renal sympathoinhibition responses induced by acute hypernatremia.
Asunto(s)
Aorta/inervación , Seno Carotídeo/inervación , Hipernatremia/fisiopatología , Riñón/inervación , Inhibición Neural , Sistema Nervioso Simpático/fisiopatología , Vasodilatación , Vías Aferentes/fisiopatología , Animales , Presión Arterial , Barorreflejo , Modelos Animales de Enfermedad , Hipernatremia/sangre , Masculino , Ratas Wistar , Sodio/sangre , Simpatectomía , Sistema Nervioso Simpático/cirugía , Factores de TiempoRESUMEN
The metabolic syndrome (MS), formally known as syndrome X, is a clustering of several risk factors such as obesity, hypertension, insulin resistance, and dislypidemia which could lead to the development of diabetes and cardiovascular diseases (CVD). The frequent changes in the definition and diagnostic criteria of MS are indications of the controversy and the challenges surrounding the understanding of this syndrome among researchers. Obesity and insulin resistance are leading risk factors of MS. Moreover, obesity and hypertension are closely associated to the increase and aggravation of oxidative stress. The recommended treatment of MS frequently involves change of lifestyles to prevent weight gain. MS is not only an important screening tool for the identification of individuals at high risk of CVD and diabetes but also an indicator of suitable treatment. As sympathetic disturbances and oxidative stress are often associated with obesity and hypertension, the present review summarizes the role of sympathetic nervous system and oxidative stress in the MS.