Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-629128

RESUMEN

Aims: Bacterial pathogens such as Pseudomonas aeruginosa and Burkholderia pseudomallei are intrinsically resistant to many classes of antibiotics. This is not only due to the poor permeability of their outer membrane but also because of expression of multiple efflux pumps. A promising strategy to minimize the efflux of drugs by these pumps is the use of efflux pump inhibitors (EPIs). In this study, the potential of caffeic acid derivatives as EPIs in P. aeruginosa and B. pseudomallei were evaluated. Methodology and results: The potential of caffeic acid and its derivatives, i.e. chlorogenic acid, caffeic acid phenethyl ester (CAPE) and caffeic acid phenethyl amide (CAPA) to act as EPIs in P. aeruginosa and B. pseudomallei were assessed using the ethidium bromide (EtBr) accumulation and minimum inhibitory concentration (MIC) validation assays. Among the four test compounds, CAPE was found to significantly increased intracellular accumulation of EtBr in both P. aeruginosa and B. pseudomallei. An increase of 21.4% and 16.8% in cell fluorescence, over a 5-min time frame was observed in P. aeruginosa and B. pseudomallei respectively. Combination of CAPE with kanamycin significantly reduced MICs of this aminoglycoside by a factor of 8-fold in P. aeruginosa and 2-fold in B. pseudomallei. Combination of CAPE with gentamicin also led to a reduction of 4-fold MIC value of this antibiotic in B. pseudomallei. Conclusion, significance and impact of study: The in-vitro results suggest that CAPE has the potential to act as an EPI in P. aeruginosa and B. pseudomallei, thus improving the efficacy of aminoglycosides as antimicrobial agents.

2.
Iran J Pharm Res ; 10(3): 403-13, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-24250372

RESUMEN

The extracts of Piper sarmentosum, a medicinal plant, are being used to prepare phytopharmaceuticals while the information about chemical kinetics of constituents of the extract is unavailable to assign precise shelf life (t90) and find optimum storage conditions of the product for patient safety, and to avoid economic repercussions of launching an unstable product. The extract was exposed to three different conditions of high temperature and relative humidity (RH) for six months. The samples were then analyzed at 0, 1, 2, 4 and 6 months by high performance liquid chromatography (HPLC) using pellitorine, sarmentine and sarmentosine as markers. Different chemical kinetic parameters of the markers were evaluated by Arrhenius equation to predict shelf life (t90) at different storage conditions and at room temperature. The markers in the extract followed the zero order degradation, and the activation energy, pre exponential factor and rate constant of the reaction of the markers were found to be varying in samples stored at different conditions. The contents of the markers were found to be decreasing at high temperature and humidity with the passage of time. The predicted shelf life (t90) of the markers at room temperature was found to be 16 months approximately. Results of this study indicate that extracts of the plant are stable at room temperature for 16 months. Moreover, the chemical kinetic data of the markers and the analytical method used to quantify the markers may be useful for phytopharmaceutical industry to produce efficacious and stable products from extracts of the plant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA