Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 405(Pt B): 134933, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36410214

RESUMEN

Mozzarella cheese was industrially frozen (-18 °C), stored for up to six months, tempered at 4 °C for one or three weeks and the structure and functionality compared to cheese stored at 4 °C and cheese aged at 4 °C for four weeks prior to freezing. When combined with ageing or tempering, the slow industrial freezing minimised changes to the protein network as detected by confocal microscopy and arrested proteolysis. Cheese functionality improved with three weeks of tempering, with properties similar to cheese refrigerated for one month, potentially due to increased proteolysis and protein rehydration. Frozen storage induced ß-sheet and ß-turn structures, as detected by S-FTIR microspectroscopy, with longer tempering leading to structural recovery in the cheese. This study indicates the proteolysis and functionality of frozen cheese can be optimised with tempering time. It also provides new insights into heat transfer during the industrial freezing and tempering of cheese.


Asunto(s)
Queso , Congelación , Industrias , Proteolisis
2.
Food Chem ; 332: 127327, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32615380

RESUMEN

The effect of variation in acid gel pH during cream cheese production was investigated. The gel microstructure was denser and cheese texture firmer, as the pH decreased from pH 5.0 to pH 4.3, despite the viscoelasticity of these gels remaining similar during heating. Protein hydration and secondary structure appeared to be key factors affecting both cheese microstructure and properties. Proteins within the matrix appeared to swell at pH 5.0, leading to a larger corpuscular structure; greater ß-turn structure was also observed by synchrotron-Fourier transform infrared (S-FTIR) microspectroscopy and the cheese was softer. A decrease in pH led to a denser microstructure with increased aggregated ß-sheet structure and a firmer cheese. The higher whey protein loss at low pH likely contributed to increased cheese hardness. In summary, controlling the pH of acid gel is important, as this parameter affects proteins in the cheese, their secondary structure and the resulting cream cheese.


Asunto(s)
Queso/análisis , Grasas/química , Manipulación de Alimentos , Proteínas/química , Reología , Concentración de Iones de Hidrógeno , Viscosidad
3.
Food Chem ; 291: 214-222, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31006461

RESUMEN

Synchrotron Fourier transform infrared (S-FTIR) microspectroscopy allows the label-free examination of material microstructure but has not been widely applied to dairy products. Here, S-FTIR microspectroscopy was applied to observe the microstructure of Mozzarella cheese and assess the protein and lipid distribution within individual cheese blocks. High lipid and high protein areas were identified in transmission and attenuated total reflectance (ATR) analysis modes and the secondary structures of cheese proteins determined. Hierarchical cluster analysis and principal component analysis identified variation in random coil, water content, lipid carbonyl and methylene stretching across the sampled area. Similar spectral features were obtained in both analysis modes; spatial resolution was higher with ATR and small differences were noted, potentially as a result of differences in sample preparation. S-FTIR is a useful microscopy tool that can detect structural alterations that may affect product properties and may assist reverse engineering of a range of dairy products.


Asunto(s)
Queso/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Análisis por Conglomerados , Lípidos/química , Análisis de Componente Principal , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA