Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 13(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39274460

RESUMEN

Objectives: CT-derived fractional flow reserve (CT-FFR) can improve the specificity of coronary CT-angiography (cCTA) for ruling out relevant coronary artery disease (CAD) prior to transcatheter aortic valve replacement (TAVR). However, little is known about the reproducibility of CT-FFR and the influence of diffuse coronary artery calcifications or segment location. The objective was to assess the reliability of machine-learning (ML)-based CT-FFR prior to TAVR in patients without obstructive CAD and to assess the influence of image quality, coronary artery calcium score (CAC), and the location of measurement within the coronary tree. Methods: Patients assessed for TAVR, without obstructive CAD on cCTA were evaluated with ML-based CT-FFR by two observers with differing experience. Differences in absolute values and categorization into hemodynamically relevant CAD (CT-FFR ≤ 0.80) were compared. Results in regard to CAD were also compared against invasive coronary angiography. The influence of segment location, image quality, and CAC was evaluated. Results: Of the screened patients, 109/388 patients did not have obstructive CAD on cCTA and were included. The median (interquartile range) difference of CT-FFR values was -0.005 (-0.09 to 0.04) (p = 0.47). Differences were smaller with high values. Recategorizations were more frequent in distal segments. Diagnostic accuracy of CT-FFR between both observers was comparable (proximal: Δ0.2%; distal: Δ0.5%) but was lower in distal segments (proximal: 98.9%/99.1%; distal: 81.1%/81.6%). Image quality and CAC had no clinically relevant influence on CT-FFR. Conclusions: ML-based CT-FFR evaluation of proximal segments was more reliable. Distal segments with CT-FFR values close to the given threshold were prone to recategorization, even if absolute differences between observers were minimal and independent of image quality or CAC.

2.
Front Cardiovasc Med ; 10: 1301619, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188259

RESUMEN

Objective: To compare machine learning (ML)-based CT-derived fractional flow reserve (CT-FFR) in patients before transcatheter aortic valve replacement (TAVR) by observers with differing training and to assess influencing factors. Background: Coronary computed tomography angiography (cCTA) can effectively exclude CAD, e.g. prior to TAVR, but remains limited by its specificity. CT-FFR may mitigate this limitation also in patients prior to TAVR. While a high reliability of CT-FFR is presumed, little is known about the reproducibility of ML-based CT-FFR. Methods: Consecutive patients with obstructive CAD on cCTA were evaluated with ML-based CT-FFR by two observers. Categorization into hemodynamically significant CAD was compared against invasive coronary angiography. The influence of image quality and coronary artery calcium score (CAC) was examined. Results: CT-FFR was successfully performed on 214/272 examinations by both observers. The median difference of CT-FFR between both observers was -0.05(-0.12-0.02) (p < 0.001). Differences showed an inverse correlation to the absolute CT-FFR values. Categorization into CAD was different in 37/214 examinations, resulting in net recategorization of Δ13 (13/214) examinations and a difference in accuracy of Δ6.1%. On patient level, correlation of absolute and categorized values was substantial (0.567 and 0.570, p < 0.001). Categorization into CAD showed no correlation to image quality or CAC (p > 0.13). Conclusion: Differences between CT-FFR values increased in values below the cut-off, having little clinical impact. Categorization into CAD differed in several patients, but ultimately only had a moderate influence on diagnostic accuracy. This was independent of image quality or CAC.

3.
J Clin Med ; 11(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35268422

RESUMEN

Background: Coronary artery disease (CAD) is a frequent comorbidity in patients undergoing transcatheter aortic valve implantation (TAVI). If significant CAD can be excluded on coronary CT-angiography (cCTA), invasive coronary angiography (ICA) may be avoided. However, a high plaque burden may make the exclusion of CAD challenging, particularly for less experienced readers. The objective was to analyze the ability of machine learning (ML)-based CT-derived fractional flow reserve (CT-FFR) to correctly categorize cCTA studies without obstructive CAD acquired during pre-TAVI evaluation and to correlate recategorization to image quality and coronary artery calcium score (CAC). Methods: In total, 116 patients without significant stenosis (≥50% diameter) on cCTA as part of pre-TAVI CT were included. Patients were examined with an electrocardiogram-gated CT scan of the heart and high-pitch scan of the torso. Patients were re-evaluated with ML-based CT-FFR (threshold = 0.80). The standard of reference was ICA. Image quality was assessed quantitatively and qualitatively. Results: ML-based CT-FFR was successfully performed in 94.0% (109/116) of patients, including 436 vessels. With CT-FFR, 76/109 patients and 126/436 vessels were falsely categorized as having significant CAD. With CT-FFR 2/2 patients but no vessels initially falsely classified by cCTA were correctly recategorized as having significant CAD. Reclassification occurred predominantly in distal segments. Virtually no correlation was found between image quality or CAC. Conclusions: Unselectively applied, CT-FFR may vastly increase the number of false positive ratings of CAD compared to morphological scoring. Recategorization was virtually independently from image quality or CAC and occurred predominantly in distal segments. It is unclear whether or not the reduced CT-FFR represent true pressure ratios and potentially signifies pathophysiology in patients with severe aortic stenosis.

4.
JACC Cardiovasc Imaging ; 15(3): 476-486, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34801449

RESUMEN

OBJECTIVES: The purpose of this study was to analyze the ability of machine-learning (ML)-based computed tomography (CT)-derived fractional flow reserve (CT-FFR) to further improve the diagnostic performance of coronary CT angiography (cCTA) for ruling out significant coronary artery disease (CAD) during pre-transcatheter aortic valve replacement (TAVR) evaluation in patients with a high pre-test probability for CAD. BACKGROUND: CAD is a frequent comorbidity in patients undergoing TAVR. Current guidelines recommend its assessment before TAVR. If significant CAD can be excluded on cCTA, invasive coronary angiography (ICA) may be avoided. Although cCTA is a very sensitive test, it is limited by relatively low specificity and positive predictive value, particularly in high-risk patients. METHODS: Overall, 460 patients (age 79.6 ± 7.4 years) undergoing pre-TAVR CT were included and examined with an electrocardiogram-gated CT scan of the heart and high-pitch scan of the vascular access route. Images were evaluated for significant CAD. Patients routinely underwent ICA (388/460), which was omitted at the discretion of the local Heart Team if CAD could be effectively ruled out on cCTA (72/460). CT examinations in which CAD could not be ruled out (CAD+) (n = 272) underwent additional ML-based CT-FFR. RESULTS: ML-based CT-FFR was successfully performed in 79.4% (216/272) of all CAD+ patients and correctly reclassified 17 patients as CAD negative. CT-FFR was not feasible in 20.6% because of reduced image quality (37/56) or anatomic variants (19/56). Sensitivity, specificity, positive predictive value, and negative predictive value were 94.9%, 52.0%, 52.2%, and 94.9%, respectively. The additional evaluation with ML-based CT-FFR increased accuracy by Δ+3.4% (CAD+: Δ+6.0%) and raised the total number of examinations negative for CAD to 43.9% (202/460). CONCLUSIONS: ML-based CT-FFR may further improve the diagnostic performance of cCTA by correctly reclassifying a considerable proportion of patients with morphological signs of obstructive CAD on cCTA during pre-TAVR evaluation. Thereby, CT-FFR has the potential to further reduce the need for ICA in this challenging elderly group of patients before TAVR.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Reemplazo de la Válvula Aórtica Transcatéter , Anciano , Anciano de 80 o más Años , Angiografía por Tomografía Computarizada/métodos , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/terapia , Humanos , Aprendizaje Automático , Valor Predictivo de las Pruebas , Tomografía Computarizada por Rayos X , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA