RESUMEN
Aim: We investigated the role of maternal ancestry in neoplastic hematological malignancies (HMs) risk in a population from Central Argentina. Materials & methods: We analyzed 125 cases with HMs and 310 controls from a public hospital, and a set of 202 colorectal, breast, lung, and hematologic cancer patients from a private hospital. Results: A decreased risk for HMs was associated with the Native American haplogroup B2 (odds ratio = 0.49; 95% CI: 0.25-0.92; p = 0.02). The sub-Saharan African parahaplogroup L was associated with higher susceptibility for disease (odds ratio = 3.10; 95% CI: 1.04-9.31; p = 0.043). Although the mean ancestral proportions in the total studied population was as published (61.7% Native American, 34.6% European and 3.7% African), an unequal distribution was observed between hospitals. Conclusion: We confirmed the tri-hybrid nature of the Argentinean population, with proportions varying within the country. Our finding supports the notion that associated haplogroup is population and cancer specific.
Asunto(s)
Neoplasias Hematológicas/etnología , Neoplasias Hematológicas/genética , Madres , Grupos Raciales/genética , Adulto , Anciano , Argentina/epidemiología , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/etnología , Neoplasias/genéticaRESUMEN
Germline pathogenic variants in the DNA mismatch repair genes (MMR): MLH1, MSH2, MSH6, and PMS2, are causative of Lynch syndrome (LS). However, many of the variants mapping outside the invariant splice site positions (IVS ± 1, IVS ± 2) are classified as variants of unknown significance (VUS). Three such variants (MLH1 c.588+5G>C, c.588+5G>T and c.677+5G>A) were identified in 8 unrelated LS families from Argentina, Brazil and Chile. Herein, we collected clinical information on these families and performed segregation analysis and RNA splicing studies to assess the implication of these VUS in LS etiology. Pedigrees showed a clear pattern of variant co-segregation with colorectal cancer and/or other LS-associated malignancies. Tumors presented deficient expression of MLH1-PMS2 proteins in 7/7 of the LS families, and MSI-high status in 3/3 cases. Moreover, RNA analyses revealed that c.588+5G>C and c.588+5G>T induce skipping of exon 7 whereas c.677+5G>A causes skipping of exon 8. In sum, we report that the combined clinical findings in the families and the molecular studies provided the evidences needed to demonstrate that the three MLH1 variants are causative of LS and to classify c.588+5G>C and c.677+5G>A as class 5 (pathogenic), and c.588+5G>T as class 4 (likely-pathogenic). Our findings underline the importance of performing clinical and family analyses, as well as RNA splicing assays in order to determine the clinical significance of intronic variants, and contribute to the genetic counseling and clinical management of patients and their relatives.