Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 22(9)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-33286747

RESUMEN

We place the Landau theory of critical phenomena into the larger context of multiscale thermodynamics. The thermodynamic potentials, with which the Landau theory begins, arise as Lyapunov like functions in the investigation of the relations among different levels of description. By seeing the renormalization-group approach to critical phenomena as inseparability of levels in the critical point, we can adopt the renormalization-group viewpoint into the Landau theory and by doing it bring its predictions closer to results of experimental observations.

2.
Entropy (Basel) ; 21(7)2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-33267429

RESUMEN

Any physical system can be regarded on different levels of description varying by how detailed the description is. We propose a method called Dynamic MaxEnt (DynMaxEnt) that provides a passage from the more detailed evolution equations to equations for the less detailed state variables. The method is based on explicit recognition of the state and conjugate variables, which can relax towards the respective quasi-equilibria in different ways. Detailed state variables are reduced using the usual principle of maximum entropy (MaxEnt), whereas relaxation of conjugate variables guarantees that the reduced equations are closed. Moreover, an infinite chain of consecutive DynMaxEnt approximations can be constructed. The method is demonstrated on a particle with friction, complex fluids (equipped with conformation and Reynolds stress tensors), hyperbolic heat conduction and magnetohydrodynamics.

3.
Entropy (Basel) ; 20(6)2018 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-33265547

RESUMEN

Landau damping is the tendency of solutions to the Vlasov equation towards spatially homogeneous distribution functions. The distribution functions, however, approach the spatially homogeneous manifold only weakly, and Boltzmann entropy is not changed by the Vlasov equation. On the other hand, density and kinetic energy density, which are integrals of the distribution function, approach spatially homogeneous states strongly, which is accompanied by growth of the hydrodynamic entropy. Such a behavior can be seen when the Vlasov equation is reduced to the evolution equations for density and kinetic energy density by means of the Ehrenfest reduction.

4.
Phys Rev E ; 95(3-1): 033121, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28415358

RESUMEN

The time evolution governed by the Boltzmann kinetic equation is compatible with mechanics and thermodynamics. The former compatibility is mathematically expressed in the Hamiltonian and Godunov structures, the latter in the structure of gradient dynamics guaranteeing the growth of entropy and consequently the approach to equilibrium. We carry all three structures to the Grad reformulation of the Boltzmann equation (to the Grad hierarchy). First, we recognize the structures in the infinite Grad hierarchy and then in several examples of finite hierarchies representing extended hydrodynamic equations. In the context of Grad's hierarchies, we also investigate relations between Hamiltonian and Godunov structures.

5.
Phys Rev E ; 95(2-1): 022125, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28297931

RESUMEN

Thermodynamic fluxes (diffusion fluxes, heat flux, etc.) are often proportional to thermodynamic forces (gradients of chemical potentials, temperature, etc.) via the matrix of phenomenological coefficients. Onsager's relations imply that the matrix is symmetric, which reduces the number of unknown coefficients is reduced. In this article we demonstrate that for a class of nonequilibrium thermodynamic models in addition to Onsager's relations the phenomenological coefficients must share the same functional dependence on the local thermodynamic state variables. Thermodynamic models and experimental data should be validated through consistency with the functional constraint. We present examples of coupled heat and mass transport (thermodiffusion) and coupled charge and mass transport (electro-osmotic drag). Additionally, these newly identified constraints further reduce the number of experiments needed to describe the phenomenological coefficient.

6.
Artículo en Inglés | MEDLINE | ID: mdl-26465430

RESUMEN

Reduction of a mesoscopic level to a level with fewer details is made by the time evolution during which the entropy increases. An extension of a mesoscopic level is a construction of a level with more details. In particular, we discuss extensions in which extra state variables are found in the vector fields appearing on the level that we want to extend. Reductions, extensions, and compatibility relations among them are formulated first in an abstract setting and then illustrated in specific mesoscopic theories.

7.
Artículo en Inglés | MEDLINE | ID: mdl-25615068

RESUMEN

The general equation of nonequilibrium reversible-irreversible coupling (GENERIC) is studied in light of time-reversal transformation. It is shown that Onsager-Casimir reciprocal relations are implied by GENERIC in the near-equilibrium regime. A general structure which gives the reciprocal relations but which is valid also far from equilibrium is identified, and Onsager-Casimir reciprocal relations are generalized to far-from-equilibrium regime in this sense. Moreover, reversibility and irreversibility are carefully discussed and the results are illustrated in Hamiltonian dynamics, classical hydrodynamics, classical irreversible thermodynamics, the quantum master equation, and the Boltzmann equation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA