RESUMEN
In search of new sustainable biopesticides, we determined the phytochemical profiles, acaricidal and insecticidal properties of EOs distilled from the aerial parts of three Mexican Bursera species. Results were obtained by GC-MS analysis and three different bioassays, indicating that the EO of Bursera glabrifolia exhibited high relative abundancies of α-pinene, ß-myrcene, and α-phellandrene, as well as promising pesticidal activity against Spodoptera littoralis larvae (LD50,90 = 32.4, 107.2 µg/larva), and Musca domestica (LD50,90 = 23.2, 103.2, and 13.5, 77.4 µg/female or male adult, respectively) and Tetranychus urticae adults (LD50,90 = 7.4, 30.3 µg/cm2). The Bursera lancifolia and Bursera linanoe samples contained mainly D-limonene or linalyl acetate and linalool, respectively, and showed generally less potent pesticidal properties (S. littoralis larva, LD50,90 = 45.4, 154.4 and 52.2, 158.7 µg/larva, respectively; female M. domestica adult, LD50,90 = 69.2, 210.9 and 45.1, 243.8 µg/female adult, respectively; T. urticae adults, LD50,90 = 20.7, 90.5 and 17.5, 71.4 µg/cm2, respectively). However, the EO of B. linanoe exhibited an especially pronounced activity against male M. domestica adults (LD50,90 = 10.6, 77.2 µg/male adult). Our findings prove the pesticidal potential of Mexican Bursera species in the context of integrated pest management (IPM) and highlight the importance of conducting further research to elucidate both the active principles and possibly existing synergistic effects.
Asunto(s)
Acaricidas , Bursera , Insecticidas , Aceites Volátiles , Masculino , Femenino , Animales , Insecticidas/química , Aceites Volátiles/química , Larva , Componentes Aéreos de las Plantas/químicaRESUMEN
Patagonia is a geographical area characterized by a wide plant biodiversity. Several native plant species are traditionally used in medicine by the local population and demonstrated to be sources of biologically active compounds. Due to the massive need for green and sustainable pesticides, this study was conducted to evaluate the insecticidal activity of essential oils (EOs) from understudied plants growing in this propitious area. Ciprés (Pilgerodendron uviferum), tepa (Laureliopsis philippiana), canelo (Drimys winteri), and paramela (Adesmia boronioides) EOs were extracted through steam distillation, and their compositions were analyzed through GC−MS analysis. EO contact toxicity against Musca domestica L., Spodoptera littoralis (Boisd.), and Culex quinquefasciatus Say was then evaluated. As a general trend, EOs performed better on housefly males over females. Ciprés EO showed the highest insecticidal efficacy. The LD50(90) values were 68.6 (183.7) and 11.3 (75.1) µg adult−1 on housefly females and males, respectively. All EOs were effective against S. littoralis larvae; LD50 values were 33.2−66.7 µg larva−1, and tepa EO was the most effective in terms of LD90 (i.e., <100 µg larva−1). Canelo, tepa, and paramela EOs were highly effective on C. quinquefasciatus larvae, with LC50 values < 100 µL L−1. Again, tepa EO achieved LD90 < 100 µL L−1. This EO was characterized by safrole (43.1%), linalool (27.9%), and methyl eugenol (6.9%) as major constituents. Overall, Patagonian native plant EOs can represent a valid resource for local stakeholders, to develop effective insecticides for pest and vector management, pending a proper focus on their formulation and nontarget effects.