Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Asian J ; : e202400340, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037565

RESUMEN

Already known molecules which exhibit good electrochemiluminescence (ECL) efficiencies and high photoluminescence quantum yields (PLQY) have been structurally modified in order to increase their performance. The followed strategy is to stiffen the structures to limit the rotational and vibrational freedom degrees and favour radiative decay processes once excited. Molecules under investigation consist of donor-acceptor systems in which the acceptor fraction is a benzonitrile with an imidazole in para position, while the donor fraction consists of four diphenylamine (NPh2) or 3,6-di(tert-butyl)-9H-carbazole (t-BuCz) groups in the remaining positions on the central benzene ring. Therefore, in order to stiffen these systems and restrict the intramolecular rotations (RIR), the imidazole in the para position has been replaced with more extended π-systems, i.e., benzimidazole and phenanthro[9,10-d]imidazole. The restriction of the intramolecular rotation can be clearly observed by 1H NMR analysis. We expected to observe an increase in ECL efficiency and PLQY with the rigidity. Surprisingly, we observed a generally opposite trend: molecules with the smallest imidazole fraction showed the best performance in ECL and higher PLQY. Notably, NPh2 derivatives with benzimidazole and phenanthro[9,10-d]imidazole showed an hypsochromic shift of the emission spectra with concomitant increase of the PLQY as the solvent polarity is increased.

2.
Chemistry ; 30(41): e202400778, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38770991

RESUMEN

A ß-glucosyl sterol probe bearing a terminal alkyne moiety for fluorescent tagging enables the investigation of the neuronal and intracellular localization of this class of compounds involved in neurodegenerative diseases. The compound showed localization in the neuronal cells, with marked differences in the uptake and metabolism leading to enhanced persistence with respect to the un-glycosylated sterol analogue. In addition, a different impact was observed towards lysosomes, with the simple sterol probe showing the enlargement of the lysosome structures, while the ß-glucosyl sterol was less capable to alter the morphology of this specific organelle.


Asunto(s)
Colorantes Fluorescentes , Lisosomas , Enfermedades Neurodegenerativas , Neuronas , Esteroles , Colorantes Fluorescentes/química , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Lisosomas/metabolismo , Lisosomas/química , Esteroles/química , Humanos , Animales
3.
Chempluschem ; 89(8): e202400142, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38687095

RESUMEN

Electrochemiluminescence (ECL) has gained renewed interest due to the strong parallel development of luminophores in the field of organic light emitting diodes (OLEDs) with which this technique shares several aspects. In this perspective review we discuss the most relevant advances of the past 15 years in the study of organic and organometallic compounds as ECL emitters, by dividing them in three different classes: i) fluorescent emitters, ii) phosphorescent emitters and iii) Thermally Activated Delayed Fluorescence (TADF) emitters; then, water-soluble organic luminophores will be also discussed. We focus on how their design, their photo- and electrochemical properties and, in particular, the nature of the emitter, affect their efficiency in ECL. Regardless of the type of luminophore or the photoluminescence quantum yield (PLQY), the literature converges on the fact that the most determining aspect is the stability of the oxidized/reduced form of the emitter. Even if phosphorescent emitters can show outstanding efficiency, this often requires the absence of oxygen. In the case of TADFs, there is also a strong dependence of photoluminescence both in terms of PLQY and emission energy on the polarity of the media, so compounds, that appear promising in organic solvents, may be very inefficient in aqueous media.

4.
RSC Adv ; 13(49): 34520-34523, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38024983

RESUMEN

Using a unified metal-free procedure, a selection of Thermally Activated Delayed Fluorescence (TADF) emitters has been synthesized and characterized. Different acceptor and donor moieties have been explored in order to develop red emitting dyes with reduction potentials suitable for the application in ECL using tri-propylamine as coreactant. The most promising compound shows terephthalonitrile as the acceptor and diphenylamines as donors, and it displayed an ECL efficiency that is double the one of the standard [Ru(bpy)3](PF6)2. Based on such findings, a novel water-soluble TADF emitter (Na4[4DPASO3TPN]) has been synthesized and characterized to enable electrochemiluminescence in an aqueous medium.

5.
Chemistry ; 29(55): e202301912, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37449461

RESUMEN

A family of novel thermally activated delayed fluorescence (TADF) emitters has been synthesized by a straightforward and metal-free synthesis, and structurally characterized. In this work we kept the acceptor moiety, 4-(1H-imidazol-1-yl)benzonitrile, fixed and systemically tested different donors to correlate their photophysical and electrochemical properties with their performance in electrochemiluminescence using both benzoyl peroxide as co-reactant and co-reactant free (annihilation) conditions. Some compounds exceeded the efficiency of the standard [Ru(bpy)3 ]Cl2 by up to 28 times with benzoyl peroxide and 38 times in annihilation. Interestingly, we found that the efficiency is mainly dictated by the electrochemical reversibility of the redox processes rather than by the photophysical properties in terms of photoluminescence quantum yields or excited-state lifetime. In addition, the annihilation electrochemiluminescence efficiency strongly depends on the pulse sequence. The imidazole moiety can be conveniently alkylated, thus allowing the insertion of functional groups, such a carboxylic acid, and enabling practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA